THE EXPERT’S VOICE® IN OPEN SOURCE

The Definitive Guide to

Everything you need to know about using
the GNU Compiler Collection and related tools

SECOND EDITION

William von Hagen

Apress’

The Definitive Guide
to GCC

Second Edition

William von Hagen

APIess®

The Definitive Guide to GCC, Second Edition
Copyright © 2006 by William von Hagen

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-585-5
ISBN-10 (pbk): 1-59059-585-8
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editors: Jason Gilmore, Keir Thomas

Technical Reviewer: Gene Sally

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,
Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Richard Dal Porto

Copy Edit Manager: Nicole LeClerc

Copy Editor: Jennifer Whipple

Assistant Production Director: Kari Brooks-Copony

Production Editor: Katie Stence

Compositor: Susan Glinert

Proofreader: Elizabeth Berry

Indexer: Toma Mulligan

Artist: April Milne

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this bookis available to readers at http://www.apress.comin the Source Code section.

To Dorothy Fisher, for all your love, support, and encouragement.
And for Becky Gable—what would we do without the schematics?
—Bill von Hagen

Contents at a Glance

Aboutthe AUThOr ... xvii
About the Technical RevieWer i Xix
ACKNOWIBAOMENTS Xxi
INtrOdUCHION .. o xxiii
CHAPTER 1 Using GCC’s C Compiler ..o e 1
CHAPTER 2 Using GCC’s C++ Compiler ... 41
CHAPTER 3 Using GCC’s Fortran Compilert 53
CHAPTER 4 Using GCC’s Java Compiler ..ot 79
CHAPTER 5 Optimizing Code With GCCt 101
CHAPTER 6 Analyzing Code Produced with GCC Compilers 119
CHAPTER 7 Using Autoconf and Automakeccoiiiiii it 151
CHAPTER 8 Using Libtool ... 177
CHAPTER 9 Troubleshooting GCC ... 197
CHAPTER 10 Additional GCC and Related Topic Resources 215
CHAPTER 11 Compiling GCCovini i e 227
CHAPTER 12 Building and Installing Glibc Ll 247
CHAPTER 13 Using Alternate C Librariest 281
CHAPTER 14 Building and Using C Cross-Compilers 299
APPENDIX A Using GCC Compilersccooveiiiiir i iiiieieaenenns 321
APPENDIX B Machine- and Processor-Specific Options for GCC 403
APPENDIX C Using GCC’s Online Help ... 491

Contents

Aboutthe AUThOr ... xvii
About the Technical RevieWer i Xix
ACKNOWIBAGMENTES . ..o Xxi
INtrOdUCHION .. o xxiii
CHAPTER 1 Using GCC’s C Compiler .. 1
GCC Option Refresher ... i 1

CompilingCDialects ... 3

Exploring C Warning Messagesovinriiiiiiiii i 7

GCC'sCand EXtensions ...ttt 10

Locally Declared Labels.............. ... i 1

Labels AsValues. 12

Nested FUNCLIONS i e 13

Constructing Function Calls.t 14

Referring to a Type withtypeof. 15

Zero-Length Arrays ... 15

Arrays of Variable Lengthl 17

Macros with a Variable Number of Arguments 18

Subscripting Non-Ivalue Arraysccoviiiiiiiiiain.. 18

Arithmetic on Void and Function Pointers 19

Nonconstant Initializers 19

Designated Initializers i 19

Case RaNQesS. 21

Mixed Declarationsand Code ..., 21

Declaring Function Attributesl 21

Specifying Variable Attributes.l 25

Inline Functions.o 27

FunctionNames As Strings............ ... i 28

#pragmas Accepted by GCC i 29

Objective-C Support in GCC's C Compiler ..., 30

Compiling Objective-C Applicationsoo.... 32

GCC Options for Compiling Objective-C Applications................. 33

Exploring the GCC Objective-C Runtime 36

vii

viii

CONTENTS

CHAPTER 2

CHAPTER 3

Using GCC’s C++ Compiler 41
GCC Option Refresher i 41
Filename Extensions for C++ Source Files 43
Command-Line Options for GCC’'s C++ Compiler 43
ABI Differences in g++ Versions ...ttt 46
GNU C++ Implementation Details and Extensions 47
Attribute Definitions Specifictog++ 47
C++ Template Instantiationing++............................... 49
Function Name IdentifiersinC++andC........................... 49
Minimum and Maximum Value Operators.......................... 50
Using Java Exception Handling in C++ Applications 50
Visibility Attributes and Pragmas for GCC C++ Libraries.............. 51
Using GCC’s Fortran Compiler 53
Fortran History and GCC Support it 54
Compiling Fortran Applications with gfortran 55
Common Compilation Options with Other GCC Compilers............. 55
Sample Code. 57
Compiling FortranCode............... ... i, 57
Modernizing the Sample Fortran Code. 59
Command-Line Options forgfortran 62
Code Generation Options. ... 62
Debugging Options. 63
Directory Search Options. ...t 63
Fortran Dialect Options i 63
Warning Options. 64
gfortran Intrinsics and Extensionsl 65
Classic GNU Fortran: The g77 Compilerciiia.. 74
Why Use 0777, ..o 74
Differences Between g77 and gfortran Conventions 74
Alternatives to gfortranand g77 75
The f2¢ Fortran-to-C Conversion Utility 76
The g95 Fortran Compiler. 76
Intel’s Fortran Compiler.............. .. i 76

Additional Sources of Information 77

CHAPTER 4

CHAPTER 5

CONTENTS

Using GCC’s Java Compiler 79
Javaand GCC’s Java Compiler i, 79
Basic gcj Compiler Usage ...t 80
Demonstrating gcj, javac, and JVM Compatibility 83
Filename Extensions for Java Source Files 86
Command-Line Options for GCC’s Java Compiler 86
Constructing the Java Classpatht 89
Creating and Using Jar Files and Shared Libraries 90
GCC Java Support and Extensionst 92
Java Language Standard ABI Conformance 93
Runtime Customization il 93
Getting Information About Java Source and Bytecode Files 94
Using the GNU InterpreterforJava................................ 96

Java and C++ IntegrationNotes L. 98
Optimizing Code withGCC 101
A Whirlwind Tour of Compiler Optimization Theory 102
Code Motion i 103
Common Subexpression Elimination 103
ConstantFolding.oco i 103

Copy Propagation Transformations 104

Dead Code Elimination.................... i 104
If-CONVerSION. 105
INiNiNg. 105

GCC Optimization Basicsc.coviiiiiii it 105
What's New in GCC 4.x Optimization 106
Architecture-Independent Optimizations 106
Level 1 GCC Optimizationst 107
Level 2 GCC Optimizationst 109

GCC Optimizations for Code Size, 111

Level 3 GCC Optimizations i, 112
Manual GCC Optimization Flagsoiiiii... 112
Processor-Specific Optimizations, 113
Automating Optimization with Acovea, 114
Building Acovea 114

Configuring and Running Acoveaccovviiiennann.n. 115

ix

X CONTENTS

CHAPTER 6

CHAPTER 7

CHAPTER 8

Analyzing Code Produced with GCC Compilers 119
Test Coverage Using GCCand gcov ..ot 120
Overview of TestCoverage ...t 120
Compiling Code for Test Coverage Analysis 123
Using the gcov Test Coverage Tool ...t 124
A Sample gecov SeSSION 126
Files Used and Produced During Coverage Analysis 133
Code Profiling Using GCC and gprof, 133
Obtaining and Compiling gprof............ ..., 134
Compiling Code for Profile Analysis 135
Using the gprof Code Profiler 136
Symbol Specificationsingprofl 136
A Sample gprof Session. 140
Displaying Annotated Source Code for Your Applications 144
Adding Your Own Profiling Code Using GCC’s C Compiler............ 148
Mapping Addresses to Function Names. 148
Common Profiling Errors o 149
Using Autoconf and Automake 151
Introducing Unix Software Configuration, Autoconf, and Automake 151
Installing and Configuring autoconf and automake 154
Deciding Whether to Upgrade or Replace autoconf and automake 154
Building and Installing autoconf 155
Obtaining and Installing Automake. 158
Configuring Software with autoconf and automake 161
Creating Configure.ac Files............... ..o, 161
Creating Makefile.am Files and Other Files Required by automake 166
Running Autoconfand Automake 169
Running Configure Scripts i 174
Using Libtool 177
Introductionto Libraries i 177
StaticLibrariesoo 177
Shared Libraries. ... i 178
Dynamically Loaded Libraries..................o .. 180
What IS Libtool? 181
Downloading and Installing Libtool, 182
Installing Libtool 182

Files Installed by Libtool, 184

CHAPTER 9

CHAPTER 10

CONTENTS

Using Libtool 185
Using Libtool from the Command Line............................ 185
Command-Line Options for Libtool............................... 186
Command-Line Modes for Libtool Operation. 186
Using Libtool with Autoconf and Automake........................ 191

Troubleshooting Libtool Problems 194

Getting More Information About Libtool 195

Troubleshooting GCC .. 197

Coping with Known Bugs and Misfeatures 198

Using -### to See What’'s GoingOn 199

Resolving Common Problemsl 200
Problems Executing GCC........... i 200
Using Multiple Versions of GCC on a Single System................. 200
Problems Loading Libraries When Executing Programs. 201
‘No Such File or Directory’ Errors. ..., 202
Problems Executing Files Compiled with GCC Compilers 203
Running Out of Memory When Using GCC......................... 203
Moving GCC After Installation 204
General Issues in Mixing GNU and Other Toolchains 204
Specific Compatibility Problems in Mixing GCC with Other Tools.. 206
Problems When Using Optimization.............................. 208
Problems with Include Files or Libraries 208
Mysterious Warning and Error Messages 209
Incompatibilities Between GNUCand K&RGC 210
Abuse of the __STDC__ Definition............................... 211

Resolving Build and Installation Problems 212

Additional GCC and Related Topic Resources 215

Usenet Resources for GCCcco i 215
Selecting Software for Reading Usenet News. 216
Summary of GCC NeWSQroupsovv i 217

Mailing Lists for GCCt 219
GCC Mailing Listsat gcc.gnu.org 219
Netiquette for the GCC Mailing Lists. 222
Other GCC-Related Mailing Lists 223

World Wide Web Resources for GCC and Related Topics 223
Information About GCC and Cross-Compilation 224
Information About Alternate C Libraries........................... 225

Publications About GCC and Related Topicsccoovnt.. 225

Xi

Xii CONTENTS

CHAPTER 11

CHAPTER 12

Compiling GCC 227
Why Build GCC from Source? ... 227
Starting the Build Processcoo i 228
Verifying Software Requirements................................ 228
Preparing the Installation System................................ 230
Downloading the Source Codeccoiiiii.... 231
Installing the Source Code.cco i, 231
Configuringthe Source Code ..., 232
Whatlsina (System)Name? it 233
Additional Configuration Options 234
NLS-Related Configuration Options 239
Building Specific Compilers.cocii i 239
Compiling the Compilers ...t 239
Compilation Phasescoo it 240
OtherMake TargetS. e 241
Testingthe Build 242
Installing GCC e 245
Building and Installing Glibc 247
WhatIsinGlibc? 247
Why Build Glibc from Source? ... 249
Potential Problems in Upgrading Glibc 250
Identifying Which Glibc a SystemIsUsing 251
Getting More Details About Glibc Versions 252
GlibC Add-0NS ... 253
Previewing the Build Process 254
Recommended Tools for Building Glibc 256
Updating GNU Utilities ... 257
Downloading and Installing Source Code 258
Downloadingthe Source Codeccovviiiineinn.... 258
Installing Source Code ArchiveS, 258
Integrating Add-Ons into the Glibc Source Code Directory 260
Configuringthe Source Codeco i 261
Compiling Glibc 264
TestingtheBuild 265
Installing Glibc o 265
Installing Glibc Asthe Primary CLibrary 266
Installing an Alternate Glibcl 268

UsingaRescue Disk ... 269

CHAPTER 13

CHAPTER 14

CONTENTS

Troubleshooting Glibc Installation Problems 270
Resolving Upgrade Problems Using BusyBox 271
Resolving Upgrade Problems Using a Rescue Disk 273
Backing OutofanUpgradet 274
Problems Using Multiple Versions of Glibc 276

Getting More Information About Glibc 276
Glibc Documentation i 277
Other Glibc Web Sitesoi i 277
Glibe Mailing Lists ... 277
Reporting Problems with Glibc 278

Movingto Glibc 2.4 278

Using Alternate C Libraries 281

Why Use a Different C Library? 281

Overview of Alternate C Librariest 282

Overview of Using Alternate C Libraries 282

Buildingand Using dietlibc L 283
Getting dietlibc 284
Building dietlibc 284
Using dietlibcwithgec.............o i 285

Buildingand Using Klibc i 286
Getting KIibe o 286
Building Klibc ... 287
Using klibcwithgee. ... 288

Buildingand Using Newlib il 289
Getting Newlib 289
Building and Using Newlib. 290

Buildingand Using uClibcoi 290
Getting UCHbCo 291
BUildinguClibe 292
UsinguClibcwithgee. ... 296

Building and Using C Cross-Compilers 299

What Is Cross-Compilation? it 299

Using crosstool to Build Cross-Compilersc.coovvvenn.. 300
Retrieving the crosstool Package 304
Building a Default Cross-Compiler Using crosstool 304
Building a Custom Cross-Compiler Using crosstool 305

Using buildroot to Build uClibc Cross-Compilers 307
Retrieving the buildroot Package, 308
Building a Cross-Compiler Using buildroot 309
Debugging and Resolving Toolchain Build Problems in buildroot 317

Building Cross-Compilers Manuallycccovonn.. 318

xiii

Xiv

CONTENTS
APPENDIX A Using GCC Compilers .. 321
Using Options with GCC Compilers, 321
General Information Options 322
Controlling GCC CompilerQutputcoo it 324
Controlling the Preprocessorcooeiiiiiei e 331
Modifying Directory Search Paths 333
Passing Options to the Assembler 335
Controlling the Linker i 335
Enabling and Disabling Warning Messages 338
Adding Debugging Informationl 343
Customizing GCC Compilersoii e 347
Customizing GCC Compilers Using Environment Variables 347
Customizing GCC Compilers with Spec Files and Spec Strings 349
Alphabetical GCC Option Referencet 354
APPENDIX B Machine- and Processor-Specific Options for GCC 403
Alpha Oplions 403
Alpha/NMS Options 408
AMD X86-64 OptioNSot 408
AMD 29K OptionS . ..o 409
ARC OpliONSo 411
ARM OplionNS ... 412
AVR OPLIONS ..ot 417
Blackfin Options i 418
Clipper Options 419
Convex OptioNS ... 419
CRISOPLONS 420
CRXOPLIONS ... 422
D30V OPLIONS . ..o 423
Darwin Options i 423
FR-VOPLiONSo 425
H8/300 Options 428
HP/PA (PA/RISC) Optionso 429
i386 and AMD x86-64 Options 431
IA-B4 OptioNS 437
Intel 960 OptioNSt aM
M32C Optionso 443
M32R Options 443
MB8OX0 Oplions i 445
MBBHCTIX Optionso 447
MBBK OptioNSo 448
MCore Options ... 450
MIPS Optionso 451
MMIX Options 458

MN10200 Optionso 459

APPENDIX C

CONTENTS

MNT10300 Options ..o 459
MT OptiONS ..o 460
NS32K OptionSo 460
PDP-11 0ptions 462
PowerPC (PPC) Options 463
RS/6000 Optionsot 474
RT OptioNS .o 474
S/390 and zSeries OptionS ...t 475
SHOPHONS ... 477
SPARC OptionS 479
SystemV Options 482
TMS320C3x/CAx 0ptions 483
VB850 Oplions ... 485
VAX Oplions ... 487
Xstormy16 Options i 487
Xtensa Optionso 487
Using GCC’s OnlineHelp 491
WhatIs GNU Info? 491
Getting Started, or Instructions for the Impatient 492
Getting Help 494
The Beginner's Guide toUsing GNU Info 494
AnatomyofaGNUInfoScreen...............t 494
Moving AroundinGNU Info............. i 496
Performing SearchesinGNU Info................................ 498
Following Cross-References, 499
Printing GNU InfoNodes, 500
Invoking GNU Info. ... 501
Stupid Info Tricks 502
Using Command Multipliersciii ... 502
Working with Multiple Windows 503
.. 505

Xv

About the Author

BILL VON HAGEN holds degrees in computer science, English writing, and
art history. Bill has worked with Unix systems since 1982, during which
time he has been a system administrator, writer, systems programmer,
development manager, drummer, operations manager, content manager,
and product manager. Bill has written a number of books including
The Ubuntu Bible, Hacking the TiVo, Linux Filesystems, Installing Red Hat
Linux, and SGML for Dummies; coauthored Linux Server Hacks, Volume 2
and Mac OS X Power User’s Guide; and contributed to several other books.
Bill has written articles and software reviews for publications including
Linux Journal, Linux Magazine, Mac Tech, Linux Format (UK), Mac Format (UK), and Mac Directory.
He has also written extensive online content for CMP Media, Linux Planet, and Linux Today. An avid
computer collector specializing in workstations, he owns more than 200 computer systems. You can
contact Bill at wh@vonhagen.org.

Xvii

About the Technical Reviewer

GENE SALLY has been a Linux enthusiast for the past ten years, and for the past six he has channeled
his enthusiasm through his employer, TimeSys, creating tools for embedded Linux engineers and
helping them become more productive. Embedded development pushes the envelope of most tech-
nologies, Linux and GCCincluded, so Gene has had the opportunity to push these tools to their limits
as he creates development tools and technologies for TimeSys’ customers.

Xix

Acknowledgments

I "d like to thank Kurt Wall for his friendship and the opportunity to work with him on the first edition
of this book, and Marta Justak, of Justak Literary Services, for her support and help with this book. I'd
also like to thank Gene Sally for making this book far better than it could have been without him, and
Richard Dal Porto, Keir Thomas, Jason Gilmore, Jennifer Whipple, Katie Stence, and others at Apress
for their patience (!) and support for this second edition. In general, I'd like to thank GCC, emacs
(the one true editor), Richard Stallman and the FSF, 50 million BSD fans (who can’t be wrong), and
Linux Torvalds and a cast of thousands for their contributions to computing as we know it today.

Without their foresight, philosophy, and hard work, this book wouldn'’t even exist. I'd especially
like to thank rms for some way cool LMI hacks long ago.

XXi

Introduction

This book, The Definitive Guide to GCC, is about how to build, install, customize, use, and trouble-
shoot GCC version 4.x. GCC has long been available for most major hardware and operating system
platforms and is often the preferred family of compilers.

As a general-purpose set of compilers, GCC produces high-quality, fast code. Due to its design,
GCC is easy to port to different architectures, which contributes to its popularity. GCC, along with
GNU Emacs, the Linux operating system, the Apache Web server, the Sendmail mail server, and the
BIND DNS server, are showpieces of the free software world and proof that sometimes you can get a
free lunch.

Why a Book About GCC?

I wrote this book, and you should read it, for a variety of reasons: it covers version 4.x; it is the only
book that covers general GCC usage; and I would argue that it is better than GCC’s own documenta-
tion. You will not find more complete coverage of GCC’s features, quirks, and usage anywhere else in
asingle volume. There are no other up-to-date sources of information on GCC, excluding GCC’s own
documentation. GCC usually gets one or two chapters in programming books and only a few para-
graphs in other more general titles.

GCC’s existing documentation, although thorough and comprehensive, targets a programming-
savvy reader. There’s certainly nothing wrong with this approach, which is certainly the proper
approach for advanced users, but GCC’s own documentation leaves the great majority of its users
out in the cold. Much of The Definitive Guide to GCC s tutorial and practical in nature, explaining
why you use one option or why you should not use another one. In addition, explaining auxiliary
tools and techniques that are relevant to GCC but not explicitly part of the package helps make this
book a complete and usable guide and reference. Showing you how to use the compilers in the GCC
family and related tools, and helping you get your work done are this book’s primary goals.

Most people, including many long-time programmers, use GCC the way they learned or were
taught to use it. That is, many GCC users treat the compiler as a black box, which means that they
invoke it by using a small and familiar set of options and arguments they have memorized, shoving
source files in one end, and then receiving a compiled, functioning program from the other end.
With a powerful set of compilers such as GCC, there are indeed stranger (and more useful) things
than were dreamed of in Computer Science 101. Therefore, another goal when writing The Definitive
Guide to GCCwas to reveal cool but potentially obscure options and techniques that you may find
useful when building or using GCC and related tools and libraries.

Inveterate tweakers, incorrigible tinkerers, and the just plain adventurous among you will also
enjoy the chance to play with the latest and greatest version of GCC and the challenge of bending a
complex piece of software to your will, especially if you have instructions that show you how to do so
with no negative impact on your existing system.

XXiii

XXiv

INTRODUCTION

Why the New Edition?

I've written a new edition of this book for two main reasons: much has changed in GCC since the first
edition of this book came out, and I wanted to talk about the other GCC compilers and related tech-
nologies such as cross-compilers and alternate C libraries. The GCC 4.x family of compilers is now
available, providing a new optimization framework, many associated improvements to optimization
in general, a new Fortran compiler, significant performance improvements for the C++ compiler,
huge updates to the Java compiler, just-in-time compilation for Java, support for many new platforms,
and enough new options in general to keep you updating Makefiles for quite a while. The first edition
of this book focused on the C and C++ compilers in GCC, but enquiring minds want to know much
more. This edition substantially expands the C++ coverage and adds information about using the
Fortran, Java, and Objective-C compilers. No one has ever asked me about the Ada compiler, so I've
still skipped that one. In addition, I've added information on using alternate C libraries and building
cross-compilers that should make this book more valuable to its existing audience and (hopefully)
attractive to an even larger one.

What You Will Learn

The Definitive Guide to GCC now provides a chapter dedicated to explaining how to use each of the
C, C++, Fortran, and Java compilers. Information that is common to all of the compilers has been
moved to Appendix A, so as not to repeat it everywhere and keep you from getting started with your
favorite compiler. Similarly, information about building GCC has been moved to much later in the
book, since most readers simply want to use the compilers that they find on their Linux and *BSD
systems, not necessarily build them from scratch. However, if you want the latest and greatest version
of GCC, you will learn how to download, compile, and install GCC from scratch, a poorly understood
procedure that, until now, only the most capable and confident users have been willing to undertake.

The chapter on troubleshooting compilation problems has been expanded to make it easier
than ever to discover problems in your code or the configuration or installation of your GCC compilers.
If you're a traditional Makefile fan, the chapters on Libtool, Autoconf, and Automake will help you
produce your Makefiles automatically, making it easier to package, archive, and distribute the source
code for your projects. The chapters on code optimization, test coverage, and profiling have been
expanded and updated to discuss the latest techniques and tools, helping you debug, improve, and
test your code more extensively than ever. Finally, the book veers back to its focus for a more general
audience by providing a complete summary of the GCC’s command-line interface, a chapter on
troubleshooting GCC usage and installation, and another chapter explaining how to use GCC'’s
online documentation.

What You Need to Know

This is an end user’s book intended for anyone using almost all of the GCC compilers (sorry, Ada fans).
Whether you are a casual end user who only occasionally compiles programs, an intermediate user
using GCC frequently but lacking much understanding of how it works, or a programmer seeking to exer-
cise GCC to the full extent of its capabilities, you will find information in this book that you can use
immediately. Because Linux and Intel x86 CPUs are so popular, I've assumed that most of you are
using one version or another of the Linux operating system running on Intel x86 or compatible systems.
This isn’t critical—most of the material is GCC-specific, rather than being Linux- or Intel-specific,
because GCC is largely independent of operating systems and CPU features in terms of its usage.
What do you need to know to benefit from this book? Well, knowing how to type is a good start
because the GCC compilers are command-line compilers. (Though GCC compilers are integrated

INTRODUCTION

into many graphical integrated development environments, that is somewhat outside the scope of
this book.) You should therefore be comfortable with working in a command-line environment, such
as a terminal window or a Unix or Linux console. You need to be computer literate, and the more
experience you have with Unix or Unix-like systems, such as Linux, the better. If you have downloaded
and compiled programs from source code before, you will be familiar with the terminology and
processes discussed in the text. If, on the other hand, this is your first foray into working with source
code, the chapters on building GCC and C libraries will get you up and running quickly. You do not
need to be a programming wizard or know how to do your taxes in hexadecimal. Any experience that
you have using a compiled programming language is gravy.

You should also know how to use a text editor, such as vi, pico, or Emacs, if you intend to type
the listings and examples yourself in order to experiment with them. Because the source and binary
versions of the GCC are usually available in some sort of compressed format, you will also need to
know how to work with compressed file formats, usually gzipped tarballs, although the text will
explain how to do so.

What The Definitive Guide to GGG Does Not Cover

As an end user’s book on GCC, a number of topics are outside this book’s scope. In particular, itis not
aprimer on C, C++, Fortran, orJava, although each chapter provides a consistent set of programming
examples that I've used throughout the book. As discussed throughout this book, GCCis a collection
of front-end, language-specific interfaces to a common back-end compilation engine. The list of
compilers includes C, C++, Objective C, Fortran, Ada, and Java, among others. Compiler theory gets
short shrift in this book, because I believe that most people are primarily interested in getting work
done with GCC, not writing it. The Free Software Foundation has some excellent documents on GCC
internals on its Web site, and it doesn’t get much more definitive than that. That said, it is difficult to
talk about using a compiler without skimming the surface of compiler theory and operation, so this
book defines key terms and concepts as necessary while describing GCC’s architecture and overall
compilation workflow.

History and Overview of GCC

This section takes a more thorough look at what GCC is and does and includes the obligatory history
of GCC. Because GCC is one of the GNU Project’s premier projects, GCC’s development model bears
a closer look, so I will also show you GCC’s development model, which should help you understand
why GCC has some features and lacks other features, and how you can participate in its development.

What exactly is GCC? The tautological answer is that GCC is an acronym for the GNU Compiler
Collection, formerly known as the GNU Compiler Suite, and also known as GNU CC and the GNU C
Compiler. As remarked earlier, GCC is a collection of compiler front ends to a common back-end
compilation engine. The list of compilers includes C, C++, Objective C, Fortran (now 95, formerly 77),
and Java. GCC also has front ends for Pascal, Modula-3, and Ada 9X. The C compiler itself speaks
several different dialects of C, including traditional and ANSI C. The C++ compiler is a true native
C++ compiler. Thatis, it does not first convert C++ code into an intermediate C representation before
compiling it, as did the early C++ compilers such as the Cfront “compiler” Bjarne Stroustrup first
used to create C++. Rather, GCC’s C++ compiler, g++, creates native executable code directly from
the C++ source code.

GCC is an optimizing and cross-platform compiler. It supports general optimizations that can
be applied regardless of the language in use or the target CPU and options specific to particular CPU
families and even specific to a particular CPU model within a family of related processors. Moreover,
the range of hardware platforms to which GCC has been ported is remarkably long. GCC supports
platform and target submodels, so that it can generate executable code that will run on all members

XXV

Xxvi INTRODUCTION

of a particular CPU family or only on a specific model of that family. Table 1 provides a partial list
of GCC’s supported architectures, many of which you might never have heard of, much less used.
Frankly, I haven’t used (or even seen) all of them. For a more definitive list, see Appendix B, which
summarizes architectures and processor-specific options for your convenience.

Considering the variety of CPUs and architectures to which GCC has been ported, it should be
no surprise that you can configure it as a cross-compiler and use GCC to compile code on one plat-
form that is intended to run on an entirely different platform. In fact, you can have multiple GCC
configurations for various platforms installed on the same system and, moreover, run multiple GCC

versions (older and newer) for the same CPU family on the same system.

Table 1. Some of the Most Popular Processor Architectures Supported by GCC

Architecture Description

AMD29K AMD Am29000 architectures

AMDG64 64-bit AMD processors that are compatible with the Intel-32
architecture

ARM Advanced RISC Machines architectures

ARC Argonaut ARC processors

AVR Atmel AVR microcontrollers

ColdFire Motorola’s latest generation of 68000 descendents

DEC Alpha Compagq (neé Digital Equipment Corporation) Alpha processors

H8/300 Hitachi H8/300 CPUs

HP/PA Hewlett-Packard PA-RISC architectures

Intel 386 Intel i386 (x86) family of CPUs

Intel 1960 Intel 1960 family of CPUs

M32R/D Mitsubishi M32R/D architectures

M68K The Motorola 68000 series of CPUs

M88K Motorola 88K architectures

MCore Motorola M*Core processors

MIPS MIPS architectures

MN10200 Matsushita MN10200 architectures

MN10300 Matsushita MN10300 architectures

NS32K National Semiconductor NS3200 CPUs

RS/6000 and PowerPC IBM RS/6000 and PowerPC architectures

$390 IBM processors used in zSeries and System z mainframe

SPARC Sun Microsystems family of SPARC CPUs

SH3/4/5 Super Hitachi 3, 4, and 5 family of processors

TMS320C3x/C4x

Texas Instruments TMS320C3x and TMS320C4x DSPs

INTRODUCTION

GCC’s History

GCC, or rather, the idea for it, actually predates the GNU Project. In late 1983, just before he started
the GNU Project, Richard M. Stallman, president of the Free Software Foundation and originator of the
GNU Project, heard about a compiler named the Free University Compiler Kit (known as VUCK) that
was designed to compile multiple languages, including C, and to support multiple target CPUs. Stallman
realized that he needed to be able to bootstrap the GNU system and that a compiler was the first
strap he needed to boot. So he wrote to VUCK's author asking if GNU could use it. Evidently, VUCK’s
developer was uncooperative, responding that the university was free but that the compiler was not.
As aresult, Stallman concluded that his first program for the GNU Project would be a multilanguage,
cross-platform compiler. Undeterred and in true hacker fashion, desiring to avoid writing the entire
compiler himself, Stallman eventually obtained the source code for Pastel, a multiplatform compiler
developed at Lawrence Livermore National Laboratory. He added a C front end to Pastel and began
porting it to the Motorola 68000 platform, only to encounter a significant technical obstacle: the
compiler’s design required many more megabytes of stack space than the 68000-based Unix system
supported. This situation forced him to conclude that he would have to write a new compiler, starting
from ground zero. That new compiler eventually became GCC.

Although it contains none of the Pastel source code that originally inspired it, Stallman did adapt
and use the C front end he wrote for Pastel. As a starting point for GCC’s optimizer, Stallman also
used PO, a portable peephole optimizer that performed optimizations generally done by high-level
optimizers, in addition to low-level peephole optimizers. GCC (and PO’s successor, vpo) still uses
RTL (register transfer language) as an intermediate format for the optimizer. Development of this
primordial GCC proceeded slowly through the 1980s, because, as Stallman writes in his description of the
GNU Project (http://www.gnu.org/gnu/the-gnu-project.html), “first, [he] worked on GNU Emacs.”

During the 1990s, GCC development split into two, perhaps three, branches. While the primary
GCC branch continued to be maintained by the GNU Project, a number of other developers, prima-
rily associated with Cygnus Solutions, began releasing a version of GCC known as EGCS (Experimental
[or Enhanced] GNU Compiler Suite). EGCS was intended to be a more actively developed and more
efficient compiler than GCC, but was otherwise effectively the same compiler because it closely
tracked the GCC code base and EGCS enhancements were fed back into the GCC code base maintained
by the GNU Project. Nonetheless, the two code bases were separately maintained. In April 1999, GCC’s
maintainers, the GNU Project, and the EGCS steering committee formally merged. At the same time,
GCC’s name was changed to the GNU Compiler Collection and the separately maintained (but, as
noted, closely synchronized) code trees were formally combined, ending a long fork and incorpo-
rating the many bug fixes and enhancements made in EGCS into GCC. This is why EGCS is often
mentioned, though it is officially defunct.

Other historical variants of GCC include the Pentium Compiler Group (PCG) project’s own version
of GCC, PGCC. PGCC was a Pentium-specific version that was intended to provide the best possible
support for features found in Intel’s Pentium-class CPUs. During the period of time that EGCS was
separately maintained, PGCC closely tracked the EGCS releases. The reunification of EGCS and GCC
seems to have halted PGCC development because, at the time of this writing, the PCG project’s last
release was 2.95.2.1, dated December 27, 2000. For additional information, visit the PGCC project’s
Web site at http://www.goof.com/pcg/.

At the time that this book was written, GCC 4.2 was about to become available. The latest officially
released version of the GCC 3.x line of compilers is 3.4.5. Other significant milestone compilers are
the 2.95.x compilers, which were widely hacked to produce code for a variety of embedded systems and
which are still widely available.

Who Maintains GCC?

Formally, GCC is a GNU Project, which is directed by the FSF. The FSF holds the copyright on the
compilers, and licenses the compilers under the terms of the GPL. Either individuals or the FSF hold

Xxvii

XXviii

INTRODUCTION

the copyrights on other components, such as the runtime libraries and test suites, and these other
components are licensed under a variety of licenses for free software. For information on the licensing of
any FSF package see the file LICENSE that is provided with its source code distribution. The FSF also
handles the legal concerns of the GCC project. So much for the administrivia.

On the practical side, a cast of dozens maintains GCC. GCC’s maintainers consist of a formally
organized steering committee and a larger, more loosely organized group of hackers scattered all
over the Internet. The GCC steering committee, as of August 2001, is made up of 14 people repre-
senting various communities in GCC’s user base who have a significant stake in GCC’s continuing
and long-term survival, including kernel hackers, Fortran users, and embedded systems developers.
The steering committee’s purpose is, to quote its mission statement, “to make major decisions in the
best interests of the GCC project and to ensure that the project adheres to its fundamental principles
found in the project’s mission statement.” These “fundamental principles” include the following:

* Supporting the goals of the GNU Project

* Adding new languages, optimizations, and targets to GCC

e More frequent releases

* Greater responsiveness to consumers, the large user base that relies on the GCC compiler

* An open development model that accepts input and contributions based on technical merit

The group of developers that work on GCC includes members of the steering committee and,
according to the contributors list on the GCC project home page, more than 100 other individuals
across the world. Still, others not specifically identified as contributors have contributed to GCC
development by sending in patches, answering questions on the various GCC mailing lists, submitting
bug reports, writing documentation, and testing new releases.

Who Uses GCC?

GCC’s user base is large and varied. Given the nature of GCC and the loosely knit structure of the free
software community, though, no direct estimate of the total number of GCC users is possible. A direct
estimate, based on standard metrics, such as sales figures, unit shipments, or license purchases, is
virtually impossible to derive because such numbers simply do not exist. Even indirect estimates,
based, for example, on the number of downloads from the GNU Web and FTP sites, would be question-
able because the GNU software repository is mirrored all over the world.

More to the point, I submit that quantifying the number of GCC users is considerably less
important and says less about GCC users than examining the scope of GCC’s usage and the number
of processor architectures to which it has been ported. For example, GCC is the standard compiler
shipped in every major and most minor Linux distributions. GCC is also the compiler of choice for
the various BSD operating systems (FreeBSD, NetBSD, OpenBSD, and so on). Thanks initially to the
work of DJ Delorie, GCC works on most modern DOS versions, including MS-DOS from Microsoft,
PC-DOS from IBM, and DR-DOS. Indeed, Delorie’s work resulted in ports of most of the GNU tools
for DOS-like environments. Cygnus Solutions, now owned by Red Hat, Inc., created a GCC port for
Microsoft Windows users. Both the DOS and Windows ports offer complete and free development
environments for DOS and Windows users.

The academic computing community represents another large part of GCC’s user base. Vendors
of hardware and proprietary operating systems typically provide compiler suites for their products
as a so-called value-added service, that is, for an additional, often substantial, charge. As free soft-
ware, GCC represents a compelling, attractive alternative to computer science departments faced
with tight budgets. GCC also appeals to the academic world because it is available in source code
form, giving students a chance to study compiler theory, design, and implementation. GCC is also
widely used by nonacademic customers of hardware and operating system vendors who want to

INTRODUCTION

reduce support costs by using a free, high-quality compiler. Indeed, if you consider the broad range
of hardware to which GCC has been ported, it becomes quite clear that GCC’s user base is composed
of the broadest imaginable range of computer users.

In general, my favorite response from any reader of this book to the question of who uses GCC
is “I do.”

Are There Alternatives?

What alternatives to GCC exist? As framed, this question is somewhat difficult to answer. Remember
that GCC is the GNU Compiler Collection, a group of language-specific compiler front ends using a
common back-end compilation engine, and that GCC is free software. So if you rephrase the question
to “what free compiler suites exist as alternatives to GCC?” the answer is “very few.”

As mentioned earlier, the Pentium Compiler Group created PGCC, a version of GCC, that was
intended to extend GCC'’s ability to optimize code for Intel’s Pentium-class CPUs. Although PGCC
development seems to have stalled since the EGCS/GCC schism ended, the PGCC Web site still exists
(although it, too, has not been modified recently).

If you remove the requirement that the alternative be free, you have many more options. Many
hardware vendors and most operating system vendors will be happy to sell you compiler suites for
their respective hardware platforms or operating systems, but the cost can be prohibitive. Some
third-party vendors exist that provide stand-alone compiler suites. One such vendor is The Portland
Group (http://www.pgroup.com/), which markets a set of high-performance, parallelizing compiler
suites supporting Fortran, C, and C++. Absoft Corporation also offers a well-regarded compiler suite
supporting Fortran 77, Fortran 95, C, and C++. Visit its Web site at http://www.absoft.com/ for addi-
tional information. Similarly, Borland has a free C/C++ compiler available. Information on Borland’s
tools can be found on its Web site athttp://www.borland.com/. Intel and Microsoft also sell very good
compilers. And they are not that expensive.

Conversely, if you dispense with the requirement that alternatives be collections or suites, you
can select from a rich array of options. A simple search for the word compilers at Yahoo! generates
more than 120 Web sites showcasing a variety of single-language compilers, including Ada, Basic, C
and C++, COBOL, Forth, Java, Logo, Modula-2 and Modula-3, Pascal, Prolog, and Smalltalk. If you are
looking for alternatives to GCC, a good place to start your search is the compilers.net Web page at
http://www.compilers.net/.

So much for alook at alternatives to GCC. This is a book about GCC, after all, so I hope that you'll
forgive me for largely leaving you on your own when it comes to finding information about other
compilers. Some chapters of this book, such as the chapter on the new GCC Fortran compiler, gfortran,
discuss alternatives because of the huge number of Fortran variants out there, but by and large, GCC
is the right solution to your compilation problems.

XXix

CHAPTER 1

Using GCC’s C Compiler

This chapter’s goal is to get you comfortable with typical usage of the GNU Compiler Collection’s
C compiler, gcc. This chapter focuses on those command-line options and constructs that are specific
to GCC’s C compiler. Options that can generally be used with any GCC compiler are discussed in
Appendix A. Throughout this chapter, as throughout this book, I'll differentiate between GCC (the
GNU Compiler Collection) and gcc, the C compiler that is provided as part of GCC.

This chapter explains how to tell gcc which dialect of C it should expect to encounter in your
source files, from strict ANSI/ISO C to classic Kernighan and Ritchie (K&R) C. It also explains the
variety of special-purpose constructs that are supported by gcc and how to invoke and use them. It
concludes by discussing using gcc to compile Objective C applications and discusses specific details
of the GNU Obijective C runtime environment.

GCC Option Refresher

Appendix A discusses the options that are common to all of the GCC compilers and how to customize
various portions of the compilation process. However, I'm not a big fan of making people jump
around in a book for information. For that reason, this section provides a quick refresher of basic
GCC compiler usage as it applies to the gcc C compiler. For detailed information, see Appendix A.
If you are new to gcc and just want to get started quickly, you're in the right place.

The gcc compiler accepts both single-letter options, such as -0, and multiletter options, such as
-ansi. Because it accepts both types of options you cannot group multiple single-letter options together
as you may be used to doing in many GNU and Unix/Linux programs. For example, the multiletter
option -pg is not the same as the two single-letter options -p -g. The -pg option creates extra code in
the final binary that outputs profile information for the GNU code profiler, gprof. On the other hand,
the -p -g options generate extra code in the resulting binary that produces profiling information for
use by the prof code profiler (-p) and causes gcc to generate debugging information using the oper-
ating system’s normal format (-g).

Despite its sensitivity to the grouping of multiple single-letter options, you are generally free to
mix the order of options and compiler arguments on the gcc command line. That is, invoking gcc as

gcc -pg -fno-strength-reduce -g myprog.c -o myprog
has the same result as

gcc myprog.c -o myprog -g -fno-strength-reduce -pg

CHAPTER 1 USING GCC’S C COMPILER

I'say that you are generally free to mix the order of options and compiler arguments because, in
most cases, the order of options and their arguments does not matter. In some situations, order does
matter if you use several options of the same kind. For example, the -I option specifies the directory
or directories to search for include files. So if you specify -I several times, gcc searches the listed
directories in the order specified.

Compiling a single source file, myprog.c, using gcc is easy—just invoke gcc, passing the name of
the source file as the argument.

$ gcc myprog.c

$1s -1
-TWXT-XT-X 1 wvh users 13644 Oct 5 16:17 a.out
-IW-T--T-- 1 wvh users 220 Oct 5 16:17 myprog.c

By default, the result on Linux and Unix systems is an executable file named a.out in the current
directory, which you execute by typing ./a.out. On Cygwin systems, you will wind up with a file
named a.exe that you can execute by typing either ./a or ./a.exe.

To define the name of the output file that gcc produces, use the -o option, as illustrated in the
following example:

$ gcc myprog.c -0 runme

$1s -1
-IW-T--T-- 1 wvh users 220 Oct 5 16:17 myprog.c
-TWXT-XT-X 1 wvh users 13644 Oct 5 16:28 runme

If you are compiling multiple source files using gcc, you can simply specify them all on the gcc
command line, as in the following example, which leaves the compiled and linked executable in the
file named showdate:

$ gcc showdate.c helper.c -o showdate

If you want to compile these files incrementally and eventually link them into a binary, you can
use the -c option to halt compilation after producing an object file, as in the following example:

$ gcc -c showdate.c
$ gcc -c helper.c
$ gcc showdate.o helper.o -o showdate

$ 1s -1

total 124

-IW-Y--I-- 1 wvh users 210 Oct 5 12:42 helper.c
-IW-Y--T-- 1 wvh users 45 Oct 5 12:29 helper.h
-IW-T--T-- 1 wvh users 1104 Oct 5 13:50 helper.o
-TWXT-XT-X 1 wvh users 13891 Oct 5 13:51 showdate
STW-T--T-- 1 wvh users 208 Oct 5 12:44 showdate.c
STW-T--T-- 1 wvh users 1008 Oct 5 13:50 showdate.o

CHAPTER 1 USING GCC'S C COMPILER

Note All of the GCC compilers “do the right thing” based on the extensions of the files provided on any GCC
command line. Mapping file extensions to actions (for example, understanding that files with . o extensions only
need to be linked) is done via the GCC specs file. Prior to GCC version 4, the specs file was a stand-alone text file
that could be modified using a text editor; with GCC 4 and later, the specs file is built-in and must be extracted
before it can be modified. For more information about working with the specs file, see the section “Customizing GCC
Using Spec Strings” in Appendix A.

It should be easy to see that a project consisting of more than a few source code files would
quickly become exceedingly tedious to compile from the command line, especially after you start
adding search directories, optimizations, and other gcc options. The solution to this command-line
tedium is the make utility, which is not discussed in this book due to space constraints (although it
is touched upon in Chapter 8).

Compiling C Dialects

The gcc compiler supports a variety of dialects of C via a range of command-line options that enable
both single features and ranges of features that are specific to particular variations of C. Why bother,
you ask? The most common reason to compile code for a specific dialect of C is for portability. If you
write code that might be compiled with several different tools, you can check for that code’s adher-
ence to a given standard using GCC support for various dialects and standards. Verifying adherence
to various standards is one method developers use to reduce the risk of running into compile-time
and runtime problems when code is moved from one platform to another, especially when the new
platform was not considered when the program was originally written.

What then is wrong with vanilla ISO/ANSI C? Nothing that has not been corrected by officially
ordained corrections. The original ANSI C standard, prosaically referred to as C89, is officially known
as ANSI X3.159-1989. It was ratified by ANSIin 1989 and became an ISO standard, ISO/IEC9989:1990
to be precise, in 1990. Errors and slight modifications were made to C89 in technical corrigenda
published in 1994 and 1996. A new standard, published in 1999, is known colloquially as C99 and
officially as ISO/IEC9989:1999. The freshly minted C99 standard was amended by a corrigendum
issued in 2001. This foray into the alphabet soup of standards explains why options are available for
supporting multiple dialects of C. I'll explain how to use them a little later in this section.

In addition to the subtle variations that exist in standard C, some of the gcc C dialect options
enable you to select the degree to which gcc complies with the standard. Other options enable you
to select which C features you want. There is even a switch that enables limited support for traditional
(pre-ISO, pre-ANSI) C. But enough discussion. Table 1-1 lists and briefly describes the options that
control the C dialect to which gcc adheres during compilation.

Table 1-1. C Dialect Command-Line Options

Option Description

-ansi Supports all ISO C89 features and disables GNU extensions that
conflict with the C89 standard.

-aux-info file Saves prototypes and other identifying information about functions
declared in a translation unit to the file identified by file.

-fallow-single-precision Prevents promotion of single-precision operations to
double-precision.

CHAPTER 1 USING GCC’S C COMPILER

Table 1-1. C Dialect Command-Line Options (Continued)

Option

Description

-fbuiltin

-fcond-mismatch

-ffreestanding

-fhosted

-fno-asm

-fno-builtin

-fno-signed-bitfields

-fno-signed-char

-fno-unsigned-bitfields

-fno-unsigned-char

-fshort-wchar

-fsigned-bitfields

-fsigned-char

-funsigned-bitfields

-funsigned-char

-fwritable-strings

-no-integrated-cpp

-std=value

Recognizes built-in functions that lack the _builtin_ prefix.

Allows mismatched types in the second and third arguments of
conditional statements.

Claims that compilation takes place in a freestanding (unhosted)
environment. Freestanding means that the environment includes
all of the library functions required to operate without loading or
referencing external code. Currently, freestanding implementations
provide all of the functions identified in <float.h>, <limits.h>,
<stdarg.h>, and <stddef.h>. Freestanding 64-bit code also requires
the functions identified in <is0646.h>. Freestanding C99-compliant
code also requires anything referenced in <stdbool.h> and
<stdint.h>. The Linux kernel is a good example of a freestanding
environment.

Claims that compilation takes place in a hosted environment,
which means that external functions can be loaded from libraries
such as the standard C library. This is the default value for GCC
compilation. Programs that use external libraries (such as most
applications) are good examples of applications that compile and
execute in a hosted environment.

Disables use of asm, inline, and typeof as keywords, allowing their
use as identifiers.

Ignores built-in functions that lack the _builtin_prefix.

Indicates that bit fields of undeclared type are to be
considered unsigned.

Keeps the char type from being signed, as in the type signed char.

Indicates that bit fields of undeclared type are to be
considered signed.

Keeps the char type from being unsigned, as in the type
unsigned char.

Forces the type wchar_t to be short unsigned int.

Indicates that bit fields of undeclared type are to be
considered signed.

Permits the char type to be signed, as in the type signed char.

Indicates that bit fields of undeclared type are to be
considered unsigned.

Permits the char type to be unsigned, as in the type unsigned char.

Permits strong constants to be written and stores them in the
writable data segment.

Invokes an external C preprocessor instead of the
integrated preprocessor.

Sets the language standard to value (c89, 1509899:1990,
1509989:199409, 99, €9, 1509899:1999, 1509989:199x, gnus9, gnu9g).

CHAPTER 1 USING GCC'S C COMPILER

Table 1-1. C Dialect Command-Line Options (Continued)

Option Description

-traditional Supports a limited number of traditional (K&R) C constructs
and features.

-traditional-cpp Supports a limited number of traditional (K&R) C preprocessor
constructs and features.

-trigraphs Enables support for C89 trigraphs.

Sufficiently confused? Believe it or not, it breaks down more simply than it seems. To begin
with, throw out -aux-info and -trigraphs, because you are unlikely to ever need them. Similarly,
you are advised to not use -no-integrated-cpp because its semantics are subject to change and may,
in fact, be removed from future versions of GCC. If you want to use an external preprocessor, use the
CPP environment variable discussed in Appendix A or the corresponding make variable. Likewise,
unless you are working with old code that assumes it can be scribbled into constant strings, do not
use -fwritable-strings. After all, constant strings should be constant—if you are scribbling on them,
they are variables, so just create a variable. To be fair, however, early C implementations allowed
writable strings (primarily to limit stack space consumption), so this option exists to enable you to
compile legacy code.

The various flags for signed or unsigned types exist to help you work with code that makes
assumptions of the signedness of chars and bit fields. In the case of the char flags (-fsigned-char,
-funsigned-char, and their corresponding negative forms), each machine has a default char type,
which is either signed or unsigned. That is, given the statement

char c;

you might wind up with a char type that behaves like a signed char or an unsigned char on a given
machine. If you pass gcc the -fsigned-char option, it will assume that all such unspecified declara-
tions are equivalent to the statement

signed char c;

The converse applies if you pass gcc the -funsigned-char option. The purpose of these flags
(and their negative forms) is to allow code that assumes the default machine char type is, say, like an
unsigned char (that is, it performs operations on char types that assume an unsigned char), to work
properly on a machine whose default char type is like a signed char. In this case, you would pass gcc
the - funsigned-char option. A similar situation applies to the bit field-related options. In the case of
bit fields, however, if the code does not specifically use the signed or unsigned keyword, gcc assumes
the bit field is signed.

Note Truly portable code should not make such assumptions—that is, if you know you need a specific type
of variable, say an unsigned char, you should declare it as such rather than using the generic type and making
assumptions about its signedness that might be valid on one architecture but not on another.

You will rarely ever need to worry about the - fhosted and -ffreestanding options, but for
completeness’ sake, I'll explain what they mean and why they are important. In the world of C stan-
dards, an environment is either hosted or freestanding. A hosted environment refers to one in which
the complete standard library is present and in which the program startup and termination occur via

CHAPTER 1 USING GCC’S C COMPILER

amain() function that returns int. In a freestanding environment, on the other hand, the standard
library may not exist and program startup and termination are implementation-defined. The implica-
tion of the difference is just this: in a freestanding implementation (when invoked with -ffreestanding),
the gcc compiler makes very few assumptions about the meaning of function names that exist in the
standard library. So, for example, the ctime() function is meaningless to gcc in freestanding mode.
In hosted mode, which is the default, on the other hand, you can rely on the fact that the ctime()
function behaves as defined in the C89 (or C99) standard.

Note This discussion simplifies the distinction between freestanding and hosted environments and ignores the
distinction the I1SO standard draws between conforming language implementations and program environments.

Now, about those options that control to which standards GCC adheres. Taking into account the
command-line options I've already discussed, you are left with -ansi, -std, -traditional, -traditional
-cpp, -fno-asm, -fbuiltin, and -fno-builtin. Here again, we can simplify matters somewhat. The
-traditional option enables you to use features of pre-ISO C, and implies -traditional-cpp. These
traditional C features include writable string constants (as with -fwritable-strings), the use of
certain C89 keywords as identifiers (inline, typeof, const, volatile, and signed), and global extern
declarations. You can see by looking at Table 1-1 that -traditional also implies -fno-asm, because
-fno-asm disables the use of the inline and typeof keywords, such as -traditional, and also the
asm keyword. In K&R C, these keywords could be used as identifiers.

The -fno-builtin flag disables recognition of built-in functions that do not begin with the
__builtin_prefix. What exactly is a built-in function? Built-in functions are versions of functions in
the standard C library that are implemented internally by gcc. Some built-ins are used internally by
gcc, and only by gcc. These functions are subject to change, so they should not be used by non-GCC
developers. Most of gcc’s built-ins, though, are optimized versions of functions in the standard
libraries, intended as faster and more efficient replacements of their externally defined cousins. You
normally get these benefits for free because gcc uses its own versions of, say, alloca() or memcpy ()
instead of those defined in the standard C libraries. Invoking the -fno-builtin option disables this
behavior. The GCC info pages document the complete list of gcc’s built-in functions.

The -ansi and -std options, which force varying degrees of stricter adherence to published
C standards documents, imply -fno-builtin. As Table 1-1 indicates, -ansi causes gcc to support all
features of ISO C89 and turns off GNU extensions that conflict with this standard. To be clear, if you
specify -ansi, you are selecting adherence to the C89 standard, not the C99 standard. The options
-std=c89 or -std=1509899:1990 have the same effect as -ansi. However, using any of these three
options does not mean that gcc starts behaving as a strict ANSI compiler because GCC will not emit
all of the diagnostic messages required by the standard. To obtain all of the diagnostic messages,
you must also specify the options -pedantic or -pedantic-errors. If you want the diagnostics to be
considered warnings, use -pedantic. If you want the diagnostics to be considered errors and thus to
terminate compilation, use -pedantic-errors.

To select the C99 standard, use the option -std=c99 or -std-1s09989:1999. Again, to see all of
the diagnostic messages required by the C99 standard, use -pedantic or -pedantic-errors as previ-
ously described. To completely confuse things, the GNU folks provide arguments to the -std option
that specify an intermediate level of standards compliance. Lacking explicit definition of a C dialect,
gcc defaults to C89 mode with some additional GNU extensions to the Clanguage. You can explicitly
request this dialect by specifying - std=gnu89. If you want C99 mode with GNU extensions, you
should specify, you guessed it, -std=gnu99. The default compiler dialect will change to -std=gnu99
after gcc’s C99 support has been completed.

What does turning on standards compliance do? Depending on whether you select C89 or C99
mode, the effects of -ansi or -std=value include

CHAPTER 1 USING GCC'S C COMPILER

¢ Disabling the asm and typeof keywords
* Enabling trigraphs and digraphs
¢ Disabling predefined macros, such as unix or linux, that identify the type of system in use

* Disabling the use of // single-line comments in C code in C89 mode (C99 permits // single-line
comments)

e Defining the macro _ STRICT ANSI _ used by header files and functions to enable or disable
certain features that are or are not C89-compliant

¢ Disabling built-in functions that conflict with those defined by the ISO standard

¢ Disabling all GNU extensions that conflict with the standard (GNU extensions to C are discussed
in detail later in this chapter.)

Exploring C Warning Messages

A warning is a diagnostic message that identifies a code construct that might potentially be an error.
GCC’s C compiler also emits diagnostic messages when it encounters code or usage thatlooks ques-
tionable or ambiguous. Appendix A provides a discussion of the most commonly used options related to
warning messages. This section explores some of the most common warning messages and related
options as they apply to C programs compiled using the GCC C compiler, gcc. See Table A-7 in
Appendix A for a complete list of the warning-related options available in GCC compilers. This section
highlights the use of various warning options as they relate to compiling programs written in the
Clanguage.

When you compile C applications using the -pedantic option, you can also specify - std=version to
indicate against which version of the standard the code should be evaluated. It is a mistake, however
to use -pedantic (and, by extension, -pedantic-errors), even in combination with -ansi, to see if
your programs are strictly conforming ISO C programs. This is the case because these options only
emit diagnostic messages in situations for which the standard requires a diagnostic—the effort to
implement a strict ISO parser would be enormous. In general, the purpose of -pedantic is to detect
gratuitously noncompliant code, disable GNU extensions, and reject C++ and traditional C features
not present in the standard.

Another reason that you cannot use -pedantic to check for strict ISO compliance is that -pedantic
disregards the alternate keywords whose names begin and end with __ and expressions following
__extension__.Asarule, these two exceptions do not apply to user programs because the alternate
keywords and the __extension _ usage is limited (or should be) to system header files, which appli-
cation programs should never directly include.

Note Alternate keywords are discussed later in this chapter in the section titled “Declaring Function Attributes.”

A typical source of trouble in C code emerges from the use of functions in the printf(), scanf(),
strftime(), and strfmon() families. These calls use format strings to manipulate their arguments.
Common problems with these function groups include type mismatches between the format strings
and their associated arguments, too many or too few arguments for the supplied format strings, and
potential security issues with format strings (known generically as format string exploits). The -Wformat
warnings help you to identify and solve these problems.

Specifying the -Wformat option causes gcc to check all calls to printf(), scanf(), and other func-
tions that rely on format strings, making sure that the arguments supplied have types appropriate
to the format string and that the requested conversions, as specified in the format string, are sensible.

CHAPTER 1 USING GCC’S C COMPILER

Moreover, if you use -pedantic with -Wformat, you can identify format features not consistent with the
selected standard.
Consider the program shown in Listing 1-1 that uses printf() to print some text to the screen.

Listing 1-1. Source Code for the Sample printme.c Application

#include <stdio.h>
#include <limits.h>

int main (void)

{
unsigned long ul = LONG_MAX;
short int si = SHRT_MIN;
printf ("%d\n", ul);
printf ("%s\n", si);
return 0;

}

There are a couple of problems here. The first printf() statement prints the value of the unsigned
long variable ul using an int format string (%d). The second printf() statement prints the short int
variable si using the %s format string (that is, as a string). Despite these problems, gcc compiles the
program without complaint. It even sort of runs.

$ gcc printme.c -o printme
$./printme

2147483647
Segmentation fault

Note Depending on your system, this program may not generate a segmentation fault.

Well, that was ugly. On my test system, the program even crashed because the %s formatting
option tried to use the short int siasa pointer to the beginning of a character string, which itis not.
Now, add the -Wformat option and see what happens:

$ gcc printme.c -o printme -Wformat

printme.c: In function 'main’:

printme.c:9: warning: int format, long int arg (arg 2)
printme.c:10: warning: format argument is not a pointer (arg 2)
$./printme

2147483647

Segmentation fault

Note Depending on the compiler version, your warning output might be slightly different.

CHAPTER 1 USING GCC'S C COMPILER

This time, the compiler complains about the mismatched types and helpfully tells us where I
can find the problems. The program still compiles, but I can use the -Werror option to convert the
warning to a hard error that terminates compilation:

$ gcc printme.c -o printme -Wformat -Werror

ccl: warnings being treated as errors

printme.c: In function 'main':

printme.c:9: warning: int format, long int arg (arg 2)
printme.c:10: warning: format argument is not a pointer (arg 2)

This time, compilation stops after the errors are detected. Once I fix the mismatches, the program
compiles and runs properly. Listing 1-2 shows the corrected program.

Listing 1-2. Printme.c After Corrections

#include <stdio.h>
#include <limits.h>

int main (void)

{
unsigned long ul = LONG_MAX;
short int si = SHRT_MIN;
printf ("%ld\n", ul);
printf ("%d\n", si);
return 0;
}
$ gcc printme.c -o printme -Wformat -Werror
$./printme
2147483647
-32768
$

Much better, yes?

For more control over GCC’s format checking, you can use the options -Wno-format-y2k,
-Wno-format-extra-args, and -Wformat-security (only -Wformat is included in the -Wall roll-up
option). By default, if you supply more arguments than are supported by the available format strings,
the C standard says that the extra arguments are ignored. GCC accordingly ignores the extra argu-
ments unless you specify -Wformat. If you want to use -Wformat and ignore extra arguments, specify
-Wno-format-extra-args.

The -Wformat-security option is quite interesting. Format string exploits have become popular
in the world of blackhats in the past few years. Specifying -Wformat and -Wformat-security displays
warnings about format functions that represent potential security breaches. The current implemen-
tation covers printf() and scanf() calls in which the format string is not a string literal and in which
there are no format arguments, such as printf (var);.Such code is problematic if the format string
comes from untrusted input and contains %n, which causes printf() to write to system memory.
Recall that the conversion specifier %n causes the number of characters written to be stored in the
int pointer (int * or a variant thereof)—it is this memory write that creates the security issue.

The options that fall under the -Wunused category (see Table A-7 in Appendix A for a complete
list) are particularly helpful. In optimization passes, gcc does a good job of optimizing away unused
objects, but if you disable optimization, the unused cruft bloats the code. More generally, unused

10

CHAPTER 1 USING GCC’S C COMPILER

objects and unreachable code (detected with -Wunreachable-code) are often signs of sloppy coding

or faulty design. My own preference is to use the plain -Wunused option, which catches all unused

objects. If you prefer otherwise, you can use any combination of the five specific -Wunused-* options.
Listing 1-3 is a short example of a program with an unused variable.

Listing 1-3. Source Code for the Sample unused.c Application

int main (void)

{
int i = 10;
return 0;

As you can see, the program defines the int variable i, but never does anything with it. Here is
GCC’s output when compiling unused. c with no options:

$ gcc unused.c

Well, perhaps I really should have written, “Here is the lack of GCC’s output when compiling
unused.c with no options,” because adding -ansi -pedantic does not change the compiler’s output.
However, here is GCC’s complaint when I use -Wunused:

$ gcc -Wunused unused.c
unused.c: In function 'main’:
unused.c:3: warning: unused variable

i

Each of the warning options discussed in this section results in similar output that identifies the
translation unit and line number in which a problem is detected, and a brief message describing the
problem. (In the context of program compilation, a translation unit is a separately processed portion
of your code, which usually means the code contained in a single file. It means something completely
different when translating natural languages.) I encourage you to experiment with the warning
options. Given the rich set of choices, you can debug and improve the overall quality and readability
of your code just by compiling with a judiciously chosen set of warning options.

GCC’s C and Extensions

AsIremarked at the beginning of this chapter, GCC’s C compiler or, rather, GNU C, provides language
features that are not available in ANSI/ISO standard C. The following is an up-to-date summary of
the most interesting of these features:

* Local labels: Write expressions containing labels with local scope

* Labels as values: Obtain pointers to labels and treat labels as computed gotos

e Nested functions: Define functions within functions

* Constructing calls: Dispatch a call to another function

e Typeof Determine an expression’s type at runtime using typeof

* Zero- and variable-length arrays: Declare zero-length arrays

» Variable-length arrays: Declare arrays whose length is computed at runtime

* Variadic macros: Define macros with a variable number of arguments

* Subscripting: Subscripts any array, even if not an lvalue

¢ Pointer arithmetic: Performs arithmetic on void pointers and on function pointers

» [nitializers: Assign initializers using variable values

CHAPTER 1 USING GCC'S C COMPILER

» Designated initializers: Label elements of initializers

* Case ranges: Represent syntactic sugar in switch statements

* Mixed declarations: Mix declarations and code

e Function attributes: Declare that a function has no side effects or never returns
» Variable attributes: Specify attributes of variables

» Type attributes: Specify attributes of types

 [Inline: Defines inline functions (as fast as macros)

e Function names: Display the name of the current function

e Return addresses: Obtain a function’s return address or frame address

* Pragmas: Use GCC-specific pragmas

e Unnamed fields: Embed unnamed struct and union fields within named structs and unions

Locally Declared Labels

Each statement expression is a scope in which local labels can be declared. A local labelis simply an
identifier; you can jump to it with an ordinary goto statement, but only from within the statement
expression it belongs to. A local label declaration looks like this:

__label alabel;
or
__label alabel, blabel, ...;

The first statement declares a local label named alabel, and the second one declares two labels
named alabel and blabel. Local label declarations must appear at the beginning of the statement
expression, immediately following the opening brace ({) and before any ordinary declarations.

A label declaration defines a label name, but does not define the label itself. You do this using
name within the statement’s expression to define the contents of the label named name. For example,
consider the following code:

int main(void)

{
__label something;
int foo;

f00=0;
goto something;
{
__label _ something;
goto something;
something:
foo++;
}
something:
return foo;

This code declares two labels named something. The label in the outer block must be distinguished
from the label in the local block. Local label declaration means that the label must still be unique
with respect to the largest enclosing block. So if you put a label in a macro, you need to give it a

1

12

CHAPTER 1 USING GCC’S C COMPILER

mangled name to avoid clashing with a name the user has defined. The local label feature is useful
because statement expressions are often used in macros. If the macro contains nested loops, a goto
can be useful for breaking out of them. However, an ordinary label whose scope is the whole function
cannot be used; if the macro can be expanded several times in one function, the label will be multiply-
defined in that function.

Local labels avoid this problem:

#define SEARCH(array, target) \
(\
__label found; \
typeof (target) SEARCH target = (target); \
typeof (*(array)) * SEARCH array = (array); \
int i, j; \
int value; \
for (i = 0; i < max; i++) \
for (j = 0; j < max; j++) \
if (_SEARCH array[i][j] == _SEARCH_target) \
{ value = i; goto found; } \
value = -1; \
found: \
value; \
)
Labels As Values

You can get the address of a label defined in a current function using the operator && (a unary operator,
for you language lawyers). The value has type void *.Thelabel address is a constant value—it can be
used wherever a constant of that type is valid:
void *ptr;
ptr = &&foo;

To use this value, you need to be able to jump to it. With a normal label, you might say goto
ptr;. However, with a label used as a value, you use a computed goto statement:

goto *ptr;

Any expression that evaluates to the type void * is allowed. One way to use these computed
gotos is to initialize static arrays that will serve as a jump table:

static void *jump[] = { &&f, &g, &&h };

In this case, f, g, and h are labels to which code jumps at runtime. To use one, you index into the
array and select the label. The code to do this might resemble the following:

goto *array[i];

You cannot use computed gotos to jump to code in a different function, primarily because
attempting to do so subverts (or, perhaps, abuses) the local label feature described in the previous
section. Store the label addresses in automatic variables and never pass such an address as an argu-
ment to another function.

CHAPTER 1 USING GCC'S C COMPILER

Nested Functions

A nested function is a function defined inside another function. As you might anticipate, a nested
function’s name is local to the block in which it is defined. To illustrate, consider a nested function
named swap () that is called twice:

f(int i, int j)

{

void swap(int *a, int *b)

int tmp = *a;
*3 = *p;
*b = tmp;
}
/* more code here */
swap (8, 83);
}

The nested swap() can access all the variables of the surrounding function that are visible at the
point when it is defined (known as lexical scoping).

Note GNU C++ does not support nested functions.

Nested function definitions are permitted in the same places in which variable definitions are
allowed within functions: in any block and before the first statement in the block.

Itis possible to call the nested function from outside the scope of its name by storing its address
or passing the address to another function:

inc(int *array, int size)

{
void swap(int *a, int *b)
int tmp = *a;
*3 = *b;
*b = tmp;
}
save(swap, size);
}

In this snippet, the address of swap () is passed as an argument to the function save(). This trick
only works if the surrounding function, inc(), does not exit.

If you try to call a nested function through its address after the surrounding function exits, well,
as GCC authors put it, “all hell will break loose.” The most common disaster is that variables that
have gone out of scope will no longer exist and you will end up referencing garbage or overwriting
something else, either of which can be a difficult bug to track down. You might get lucky, but the
path of true wisdom is not to take the risk.

Note GCC uses atechnique called trampolines to implement taking addresses of nested functions. You can read
more about this technique at http://gcc.gnu.org/onlinedocs/gccint/Trampolines.html.

13

14

CHAPTER 1 USING GCC’S C COMPILER

Nested functions can jump to a label inherited from a containing function, that is, a local label,
if the label is explicitly declared in the containing function, as described in the section “Locally
Declared Labels.”

A nested function always has internal linkage, so declaring a nested function with extern is
an error.

Constructing Function Calls

Using GCC’s built-in functions, you can perform some interesting tricks, such as recording the
arguments a function receives and calling another function with the same arguments, but without
knowing in advance how many arguments were passed or the types of the arguments.

void * _ builtin_apply args();

__builtin_apply args() returns a pointer to data describing how to perform a call with the
same arguments as were passed to the current function.

void * _ builtin apply(void (*function)(), void *args, size t size);

__builtin_apply() calls function with a copy of the parameters described by args and size.
args should be the value returned by _ builtin_apply args().The argument size specifies the size
of the stack argument data in bytes. As you can probably imagine, computing the proper value for
size can be nontrivial, but can usually be done by simply calculating the sum of the sizeof() each of
the parameters. For more complex data structures, it is often easiest to simply specify a sufficiently
large number for size, but this will waste space and is somewhat inelegant.

Similarly, and again without advance knowledge of a function’s return type, you can record that
function’s return value and return it yourself. Naturally, though, the calling function must be prepared to
receive that datatype. The built-in function that accomplishes this featis __builtin_return().

void _ builtin return(void *retval);

__builtin_return() returns the value described by retval from the containing function. retval
must be a value returned by __builtin_apply().

#include <stdio.h>
int functioni(char * string, int number) {

printf("funtion1: %s\n", string);
return number + 1;

}

int function2(char * string, int number) {
void* arg list;
void* return_value;

arg list = _ builtin_apply args();

return_value = _ builtin apply((void*) functioni, arg list, ~CCC
sizeof(char *) + sizeof(int));

__builtin_return(return value);

CHAPTER 1 USING GCC'S C COMPILER

int main(int argc, char ** argv) {
printf("returned value: %d\n", function2("hello there", 42));

return O;

}

Referring to a Type with typeof

Another way to refer to or obtain the type of an expression is to use the typeof keyword, which shares
its syntax with the ISO C keyword sizeof but uses the semantics of a type name defined with typedef.
Syntactically, typeof’s usage is what you would expect: you can use typeof with an expression or
with a type. With an expression, the usage might resemble the following:

typeof (array[0](1));

Asyou can see in this example, array is an array of pointers to functions. The resulting type will
be the values of the functions. typeof’s usage with a type name is more straightforward.

typeof (char *);

Obviously, the resulting type will be pointers to char.

Tip Ifyou are writing a header file that must work when included in ISO C programs, write __typeof _instead
of typeof.

Semantically, typeof can be used anywhere a typedef name would be, which includes declara-
tions, casts, sizeof statements, or even, if you want to be perverse, within another typeof statement.
A typical use of typeof is to create type-safe expressions, such as a max macro that can safely operate
on any arithmetic type and evaluate each of its arguments exactly once:

#tdefine max(a,b) \
({ typeof (a) _a = (a); \
typeof (b) b = (b); \

a> b? a: b;})

The names aand b start with underscores to avoid the local variables conflicting with variables
having the same name at the scope in which the macro is called. Additional typeof uses might
include the following, or variations thereof:

e typeof (*x) y;:Declaresy to be of the type to which x points.

e typeof (*x) y[4];:Declaresy to be an array of the values to which x points.

* typeof (typeof (char *)[4]) y;:Declaresy as an array of pointers to characters. Clearly, this

code is more elaborate than the standard C declaration char *y[4];, to which it is equivalent.

Zero-Length Arrays

Zero-length arrays are allowed in GNU C. They are very useful as the last element of a structure that
is really a header for a variable-length object. Consider the following:

15

16

CHAPTER 1 USING GCC’S C COMPILER

struct data {
int i;
int j;
}

struct entry {
int size;
struct data[o0];
};

int e sz;
struct entry *e = (struct entry *) malloc(sizeof (struct entry) + e_sz);
e->size = e sz;

In ISO C89, you must define data[1], giving data a length of 1. This requirement forces you to
waste space (a trivial concern in this example) or, more likely, complicate the malloc() call. ISO C99
allows you to use flexible array members, which have slightly different characteristics:

¢ Flexible array members would be defined as contents[], not contents[0].

¢ (99 considers flexible array members to have incomplete type specifications. You cannot use
sizeof with incomplete types. With GNU C'’s zero-length arrays, however, sizeof evaluates
to 0. It is up to you to decide if that is a feature or not.

¢ Most significantly, flexible array members may only appear as the last member of nonempty
structs.

To support flexible array members, GCC extends them to permit static initialization of flexible
array members. This is equivalent to defining two structures where the second structure contains
the first one, followed by an array of sufficient size to contain the data. If that seems confusing,
consider the two structures s1 and s2 defined as follows:

struct f1 {

int x;

int y[];
}‘F1={1,{2, 3)4}})

struct 2 {

struct f1 f1;

int data[3];
FPfa={{1} {2,341} }

struct s1 {

int i;

int J[1;
}s1={1, {2, 3, 4} };

struct s2 {
struct si1 si;
int array[3];

Ps2={ {1}, {2, 3, 4} };

In effect, s1is defined as if it were declared as s2.The convenience of this extension is that f1 has
the desired type, eliminating the need to consistently refer to the awkward construction f2.f1. This
extension is also symmetric with declarations of normal static arrays, in that an array of unknown
size is also written with []. For example, consider the following code:

CHAPTER 1 USING GCC'S C COMPILER

struct foo {
int x;
int y[1;
b
struct bar {
struct foo z;

15

struct foo a = {1, {2, 3, 4} }; /* valid */
struct bar b = { {1, {2, 3, 4} } }; /* invalid */
struct bar c = { {1, {} } }; /* valid */
struct foo d[1] = { {1 {2, 3, 4} } }; /* invalid */

Note This code will not compile unless you are using GCC 3.2 or newer.

Arrays of Variable Length

ISO C99 allows variable-length automatic arrays, which enable you to have a nonconstant expression
for the array size but also have arrays that are preallocated at a fixed size (unlike variable arrays in
Java). Not wanting to limit this very handy feature to C99, GCC accepts variable-length arrays in C89
mode and in C++ (using -std=gcc89). Nevertheless, what ISO C99 giveth, GCC taketh away: GCC’s
implementation of variable-length arrays does not yet conform in all details to the ISO C99 standard.
Variable-length arrays are declared like other automatic arrays, but the length is not a constant
expression. The storage is allocated at the point of declaration and deallocated when the brace level
is exited. For example

FILE *myfopen(char *si, char *s2, char *mode)

char str[strlen (s1) + strlen (s2) + 1];
strcpy(str, si1);

strcat(str, s2);

return fopen(str, mode);

Jumping or breaking out of the scope of the array name deallocates the storage. You can use the
function alloca() to get an effect much like variable-length arrays. The function alloca() is available
in many, but notall, Cimplementations. On the other hand, variable-length arrays are more elegant.
You might find variable-length arrays more straightforward to use because the syntax is more natural.

Should you use an alloca()-declared array or a variable-length array? Before you decide, consider
the differences between these two methods. Space allocated with alloca() exists until the containing
function returns, whereas space for a variable-length array is deallocated as soon as the array name’s
scope ends. If you use both variable-length arrays and alloca() in the same function, deallocation
of a variable-length array will also deallocate anything more recently allocated with alloca(). You
can also use variable-length arrays as arguments to functions.

void f(int len, char data[len])
{

}

/* function body here */

In this example, you can see the function foo() accepts the integer parameter len, which is also
used to specify the size of the array of data. The array’s length is determined when the storage is allo-
cated and is remembered for the scope of the array, in case the length is accessed using sizeof.

17

18

CHAPTER 1 USING GCC’S C COMPILER

If you want to pass the array first and the length second, you can use a forward declaration
in the parameter list (which is, by the way, another GNU extension). A forward declaration in the
parameter list looks like the following:

void f(int len; char data[len], int len)
{

}

/* function body here */

The declaration int len before the semicolon, known as a parameter forward declaration,
makes the name len known when the declaration of data is parsed.

You can make multiple parameter forward declarations in the parameter list, separated by
commas or semicolons, but the last one must end with a semicolon. Following the final semicolon,
you must declare the actual parameters. Each forward declaration must match a real declaration in
parameter name and datatype. ISO C99 does not support parameter forward declarations.

Macros with a Variable Number of Arguments

C99 allows declaring macros with a variable number of arguments, just as functions can accept a
variable number of arguments. The syntax for defining the macro is similar to that of a function. For
example:

#define debug(format, ...) fprintf(stderr, format, _ VA ARGS_)

The ellipsis specifies the variable argument. When you invoke such a macro, the ellipsis repre-
sents zero or more tokens until the closing parenthesis that ends the invocation. This set of tokens
replaces the identifier VA ARGS _ in the macro body wherever it appears. See the C preprocessor
manual (info cpp) for more information about how GCC processes variadic arguments.

Subscripting Non-lvalue Arrays

A common C language term, lvalues, is a reference to objects that are addressable and can be exam-
ined, but may or may not be assignable. In ISO C99, arrays that are not lvalues still decay to pointers
and can therefore be subscripted, though they cannot be modified or used after the next sequence
point, and the unary & operator cannot be applied to them. (A sequence point is a point in a program’s
execution where all statements whose order of evaluation is potentially ambiguous have been resolved.
The simplest example of a sequence point is the semicolon that terminates any combination of C
statements.) Non-lvalue arrays are therefore arrays whose existence has been declared but to which
explicit values have not been assigned.

As an extension, GCC’s C compiler allows non-lvalue arrays to be subscripted in C89 mode.
For example, the following code is valid in GNU C but not in C89:

#include <stdio.h>
struct foo {

int a[4];
b
struct foo f();

bar(int index)

{
}

return f().a[index];

CHAPTER 1 USING GCC'S C COMPILER

Being able to reference arrays whose elements may not have values simplifies coding, but can
introduce subtle, data-dependent bugs in your code.

Arithmetic on Void and Function Pointers

GNU Csupports adding and subtracting pointer values on pointers to void and on pointers to functions.
GCC implements this feature by assuming that the size of a void or a function is 1. As a consequence,
sizeof also works on void and function types, returning 1. The option -Wpointer-arith enables
warnings if these extensions are used.

Nonconstant Initializers

GNU C does not require the elements of an aggregate initializer for automatic variables to be constant
expressions. This is the same behavior permitted by both standard C++ and ISO C99. An initializer
with elements that vary at runtime might resemble the following code:

float f(float f, float g)

{
float beats [2] = { f-g, f+g };
/* function body here */
return beats[1];

}

Designated Initializers

Standard C89 requires initializer elements to appear in the same order as the elements in the array
or structure being initialized. C99 relaxes this restriction, permitting you to specify the initializer
elements in any order by specifying the array indices or structure field names to which the initializers
apply. These are known as designated initializers. GNU C allows this as an extension in C89 mode,
but not—for you C++ programmers—in GNU C++.

To specify an array index, for example, write [index] =before the element value as shown here:

int a[6] = {[4] = 29, [2] = 15};
This is equivalent to
int a[6] = {0, 0, 15, 0, 29, 0};

The index values must be a constant expression, even if the array being initialized is automatic.
To initialize a range of elements with the same value, use the syntax [first ... last]= value.
This is a GNU extension. For example

int widths[] = {[0 ... 9] = 1, [10 ... 99] = 2, [100] = 3};

If value has side effects, the side effects happen only once, rather than for each element
initialized.

In a structure initializer, specify the name of a field to initialize with .member=. Given a structure
triplet that is defined as

struct triplet {
int x, y, z;

b

19

20

CHAPTER 1 USING GCC’S C COMPILER

The following code snippet illustrates the proper initialization method:

struct triplet p = {

.y =y val,
.X = x_val,
.z =z val

};
This initialization is equivalent to

struct triplet p = {
x_val,
y _val,
z_val
};
The [index] or .member is referred to as a designator.
You can use a designator when initializing a union in order to identify the union element you
want to initialize. For example

union foo {
int i;
double d;
b

The following statement converts 4 to a double to store it in the union using the second element:

union foo f = {
.d=14

};

In contrast, casting 4 to type union foo would store it in the union as the integer i, because it is
an integer.

You can combine designated initializers with ordinary C initialization of successive elements.
In this case, initializers lacking designators apply to the next consecutive element of the array or
structure. For example, the line

int a[6] = { [1] = v1, v2, [4] = v4 };
is equivalent to
int a[6] = { 0, vi1, v2, 0, v4, 0 };

Labeling the elements of an array initializer is especially useful when the indices are characters
or belong to an enum type. For example

int whitespace[256] = {
[I I] =1, ['\t'] =1, [I\VI] =1,
[NV =a, W] =1, ['\e'] =1)
You can also write a series of .member and [index] designators before = to specify a nested subobject

to initialize; the list is taken relative to the subobject corresponding to the closest surrounding brace
pair. For example, with the preceding struct triplet declaration, you would use the following:

struct triplet triplet array[10] = { [2].y = yv2, [2].x = xv2, [0].x = xvO };

CHAPTER 1 USING GCC'S C COMPILER

Note If the same field is initialized multiple times, its value will be from the last initialization. If multiple overridden
initializations have side effects, the standard does not specify whether the side effect will happen or not. GCC
currently discards additional side effects and issues a warning.

Case Ranges
You can specify a range of consecutive values in a single case label like this:
casem ... n:

Spaces around the ellipsis (...) are required. This has the same effect as the proper number of
individual case labels, one for each integer value from m to n, inclusive. This feature is especially
useful for ranges of ASCII character codes and numeric values, as in the following example:

case 'A" ... 'Z'":

Mixed Declarations and Code

ISO C99 and ISO C++ allow declarations and code to be freely mixed within compound statements.
The GCC extension to this feature allows mixed declarations and code in C89 mode. For example,
you can write

int i;
/* other declarations here */
i+4;
int j =1+ 2;
Each identifier is visible from the point at which it is declared until the end of the enclosing
block.

Declaring Function Attributes

GNU C enables you to tell the compiler about certain features or behaviors of the functions in your
program. This is done using keywords that declare function attributes. Function attributes permit
the compiler to optimize function calls and check your code more carefully. The keyword
__attribute allows you to specify function attributes. _attribute must be followed by an
attribute specification inside double parentheses. The following attributes are currently defined for
functions on all targets:

e alias

e always_inline
e cdecl

e const

* constructor

* deprecated

e destructor

e dllexport

e dllimport

o fastcall

21

22

CHAPTER 1 USING GCC’S C COMPILER

e flatten

e format

e format_arg

* malloc

* no_instrument function

e noinline

e nonull

* noreturn

* pure

* Tregparm

e section

e stdcall

* unused

* used

e warn_unused result

e weak

These attributes are explained throughout the remainder of this section. This list includes x86-
specific attributes, since x86 is the most popular GCC platform. Several other attributes are defined
for functions on particular target systems—these are discussed in Appendix B of this book, which

discusses platform-specific options. Other attributes are supported for variable declarations and
for types.

Tip You can also specify attributes by embedding each keyword between double underscores (_)- This alter-
native syntax allows you to use function attributes in header files without being concerned about a possible macro
of the same name. For example, you can writte __noreturn__instead of _attribute ((noreturn)).

The alias attribute enables you to identify a declaration as an alias for an existing, predefined
symbol elsewhere in your code.

Generally, functions are not inline unless optimization is specified. For functions declared inline,
the always_inline attribute inlines the associated function even in the absence of optimization.
Conversely, to prevent a function from ever being considered for inlining, use the function attribute
noinline.

On x86 systems, the cdecl attribute causes the compiler to assume that the calling function will
clean up the stack, removing the storage used to pass arguments. This is useful in conjunction with
the -mrtd switch, which causes calling functions to use the ret NUM convention that pops arguments
off the stack during the return to the calling function.

Many functions do not examine or modify any values except their arguments or have any effect
other than returning a value. Such functions can be given the const attribute. A function that has
pointer arguments and examines the data pointed to must not be declared const. Likewise, a function
that calls a non-const function cannot be const. Naturally, it does not make sense for a const function
to return void.

The deprecated attribute results in a warning if the associated function is used anywhere in the
source file. This attribute is useful to identify functions you expect to remove in a future version of a

CHAPTER 1 USING GCC'S C COMPILER

program. The warning also includes the location of the declaration of the deprecated function,
enabling users to find further information about why the function is deprecated, or what they should
do instead. The warning only occurs when the function’s return value is used. For example

int old f() _ attribute ((deprecated));
int old f();
int (*f_ptr)() = old f;

The third line generates a warning, but the second line does not.

Tip You can also use the deprecated attribute with variables and typedefs.

The ddlexport and d11import attributes are only useful when using GCC for Microsoft Windows
or Symbian OS targets, and respectively provide a global pointer to a function and enable access to
a function through a global pointer.

On x86 systems and for functions that pass a fixed number of arguments, the fastcall attribute
tells the compiler to pass the first two arguments in the registers ECX and EDX as an optimization.
Any other arguments are passed on the stack, and are popped by the function that you are calling.
If you are calling a function with a variable number of arguments this attribute is ignored and all
arguments are pushed on the stack.

The flatten attribute tells gcc to inline every instance of a call to a specific function whenever
possible, though whether inlining actually occurs is still dependent on the inlining options specified
on the command line. Like the always_inline attribute, this attribute provides an interesting alter-
native to defining macros when you only want certain functions to be inline whenever possible.

The malloc attribute tells the compiler that a function should be treated as if it were the malloc()
function. The purpose for this attribute is that the compiler assumes that calls tomalloc() resultina
pointer that cannot alias anything. This will often improve optimization specifically during alias
analysis (see Chapter 5 for discussion of GCC alias analysis during optimization).

The nonnull (arg-index, ...) attribute is useful to check that function parameters are nonnull
pointers, and takes a list of such arguments. Using this attribute generates a warning if any of the
specified arguments are actually NULL. If no parenthesized argument list is supplied, all parameters
are verified not to be NULL.

A few standard library functions, such as abort () and exit(), cannot return (they never return
to the calling function). GCC automatically knows this about standard library functions and its own
built-in functions. If your own code defines functions that never return, you can declare them using
the noreturn attribute to tell the compiler this fact. For example

void bye(int error) _ attribute ((noreturn));

void bye(int error)

{
/* error handling here*/
exit(1);

The noreturn keyword tells the compiler to assume that bye() cannot return. The compiler can
then optimize without needing to consider what might happen if bye() does return, which can result
in slightly better code. Declaring functions noreturn also helps avoid spurious warnings about
uninitialized variables. However, you should not assume that registers saved by the calling function
are restored before calling the noreturn function. If a function does not return and is given the
noreturn attribute, it should not have a return type other than void.

23

24

CHAPTER 1 USING GCC’S C COMPILER

Many functions have no effects to return a value. Similarly, such functions’ return values often
depend only on the function parameters and/or global variables. As you will learn in Chapter 5, such
functions can easily be optimized during common subexpression elimination and loop optimization,
just as arithmetic operators would be. Such functions should be declared with the pure attribute.

For example, the following function declaration asserts that the cube () function is safe to opti-
mize using common subexpression elimination:

int cube(int i) _ attribute ((pure));

Functions that might benefit from declaration as pure functions include functions that resemble
strlen() and memcmp (). Functions you might not want to declare using the pure attribute include
functions with infinite loops and those that depend on volatile memory or other system resources.
The issue with such functions is that they depend on values that might change between two consec-
utive calls, such as feof() in a multithreading environment.

Similar to the fastcall attribute, the regparm (number) attribute causes the compiler to pass up
to number integer arguments in registers EAX, EDX, and ECX instead of on the stack. Like fastcall,
this only applies to functions that take a fixed number of arguments—functions that take a variable
number of arguments will continue to be passed all of their arguments on the stack.

On x86 systems, the stdcall attribute causes the compiler to assume that the function that is
being called will clean up the stack space used to pass arguments.

The function attribute unused means that it might not be used and that this is acceptable. Accord-
ingly, GCC will omit producing a warning for this function. Likewise, the used function attribute
declares that code must be emitted for the function even if it appears that the function is never refer-
enced. This is useful, for example, when the function is referenced only in inline assembly.

Thewarn_unused_result attribute causes a warning to be emitted if a caller of the function with
this attribute does not use its return value. This can be extremely useful in detecting potential security
problems or a definite bug, such as with the realloc function.

Note GNU C++ does not currently support the unused attribute because definitions without parameters are
valid in C++.

Before the language lawyers among you start complaining that ISO C’s pragma feature should
be used instead of __attribute__, consider the following points the GCC developers make in the
GCC Texinfo help file:

At the time__attribute was designed, there were two reasons for not using #pragma:
1. It is impossible to generate #pragma commands from a macro.
2. There is no telling what the same #pragma might mean in another compiler.

These two reasons applied to almost any application that might have been proposed for #pragma.
It was basically a mistake to use #pragma for anything.

The first point is somewhat less relevant now, because the ISO C99 standard includes _Pragma,
which allows pragmas to be generated from macros. GCC-specific pragmas (#pragma GCC), more-
over, now have their own namespace. So why does __ attribute persist? Again, GCC developers
explain that “it has been found convenient to use __attribute to achieve a natural attachment of
attributes to their corresponding declarations, whereas #pragma GCC is of use for constructs that do
not naturally form part of the grammar.”

CHAPTER 1 USING GCC'S C COMPILER

Specifying Variable Attributes

Youcanalsoapply _attribute_ _tovariables. The syntax is the same as for function attributes. GCC
supports ten variable attributes:

* aligned

e deprecated

* mode

* nocommon

* packed

e section

e transparent union

* unused

e vector_size

* weak

To specify multiple attributes, separate them with commas within the double parentheses: for
example, attribute ((aligned (16),packed)). GCC defines other attributes for variables on
particular target systems. Other front ends might define more or alternative attributes. For details,
consult the GCC online help (info gcc).

The aligned (n) attribute specifies a minimum alignment of n bytes for a variable or structure
field. For example, the following declaration tells the compiler to allocate a global variable j aligned
on a 16-byte boundary:
int j _ attribute ((aligned (16))) = 0;

You can also specify the alignment of structure fields. For example, you can create a pair of ints

aligned on an 8-byte boundary with the following declaration:

struct pair {
int x[2] _ attribute ((aligned (8)));
};
If you choose, you can omit a specific alignment value and simply ask the compiler to align a
variable or a field in a way that is appropriate for the target.

char s[3] _ attribute__ ((aligned));

An aligned attribute lacking an alignment boundary causes the compiler to set the alignment
automatically to the largest alignment ever used for any datatype on the target machine. Alignment
is a valuable optimization because it can often make copy operations more efficient. How? The
compiler can use native CPU instructions to copy natural memory sizes when performing copies to
or from aligned variables or fields.

Tip The aligned attribute increases alignment; to decrease it, specify packed as well.

The deprecated attribute has the same effect and behavior for variables as it does for functions.

The mode (m) attribute specifies the datatype for the declaration with a type corresponding to
the mode m. In effect, you declare an integer or floating-point type by width rather than type. Similarly,

25

26

CHAPTER 1 USING GCC’S C COMPILER

you can specify amode of byte or __byte to declare a mode of a one-byte integer; word or __word
for a one-word integer mode, or pointer or _pointer for the mode used to represent pointers.

The packed attribute requests allocating a variable or struct member with the smallest possible
alignment, which is 1 byte for variables and 1 bit for a field. You can specify a larger alignment with
the aligned attribute. The following code snippet illustrates a struct in which the field s is packed,
which means that s immediately follows index—that is, there is no padding to a natural memory
boundary.

struct node

{
int index;
char s[2] _ attribute ((packed));
struct node *next;

b

Normally, the compiler places the code objects in named sections such as data and bss. If you
need additional sections or want certain particular variables to appear in special sections, you can
use the attribute section (name) to obtain that result. For example, an operating system kernel
might use the section name .kern_data to store kernel-specific data. The section attribute declares
that a variable or a function should be placed in a particular section.

The following small program, adapted from the GCC documentation, declares several section
names, DUART_A, DUART B, STACK, and INITDATA:

struct duart a _ attribute ((section ("DUART A"))) = { 0 };
struct duart b _ attribute_ ((section ("DUART B"))) = { 0 };
char stack[10000] attribute ((section ("STACK"))) = { 0 };
int init data _ attribute ((section ("INITDATA"))) = 0;

int main(void)
{
/* set up stack pointer */
init sp(stack + sizeof (stack));

/* set up initialized data */
memcpy (&init_data, &data, 8edata - &data);

/* enable the serial ports */
init duart(8a);
init duart(8b);

Note that the sample program uses the section attribute with an initialized definition of a
global variable, such as the four global definitions at the beginning of the program. If you fail to use
an initialized global variable, GCC will emit a warning and ignore the section attribute applied to
uninitialized variable declarations. This restriction exists because the linker requires each object be
defined once. Uninitialized variables are temporarily placed in the .common (or .bss) section and so
can be multiply-defined. To force a variable to be initialized, specify the - fno-common flag or declare
the variable using the nocommon attribute.

Tip Some executable file formats do not support arbitrary sections; so the section attribute is not available on
those platforms. On such platforms, use the linker to map the contents of a module to a specific section.

CHAPTER 1 USING GCC'S C COMPILER

The transparent_union attribute is used for function parameters that are unions. A transparent
union declares that the corresponding argument might have the type of any union member, but that
the argument is passed as if its type were that of the first union member. The unused attribute has the
same syntax and behavior as the unused attribute for functions.

Inline Functions

When you use inline with a function, GCC attempts to integrate that function’s code into its callers.
As an optimization, inline functions make execution faster by eliminating the overhead of function
calls (saving and restoring stack pointers, for example). If the argument values are constant, they can
be optimized at compile time, reducing the amount of function code integrated into the callers.
Although at first sight inlining might seem to inflate code size, this is not necessarily the case. Other
optimizations might allow sufficient code hoisting or subexpression elimination in such a way that
the actual integrated code is smaller.

Although C99 includes inline functions, one of the shortcomings of GCC is that its implementa-
tion of inline functions differs from requirements of the standard. To declare a function inline, use
the inline keyword in its declaration:

inline long cube(long i)

{
}

return i * i * i;

Note If you are writing a header file for inclusion in ISO C programs, use __inline _instead of inline.

In the absence of the inline attribute, or in addition to it, you can instruct GCC to inline all
“simple enough” functions by specifying the command-line option -finline-functions, where GCC
decides what constitutes a “simple enough” function.

Code constructs that make it impossible (or, at the least, extremely difficult) to inline functions
include using variadic arguments; calling alloca() in the function body; using variable-sized datatypes
(such as variable-length arrays); jumping to computed and nonlocal gotos; calling functions before
their definition; including recursive function calls with a function definition; and nesting functions.
If there is a nonintegrated call, then the function is compiled to assembler code as usual. The func-
tion must also be compiled as usual if the program refers to its address, because that cannot be inlined.

If you need to know when requested inlines can not be implemented, specify the command-
line option -Winline to emit both a warning that a function could not be inlined and an explanation
of why it could not be inlined.

For functions that are both inline and static, that function’s assembly language code will never
be referenced if, first, all calls to that function are integrated into a calling function, and, second, the
integrated function’s address is never taken. Accordingly, GCC will not even emit assembler code for
the function, which you can override by specitfying the option - fkeep-inline-functions.

Anticipating future compatibility with C99 semantics for inline functions, GCC’s developers
recommend using only static inline for inline functions. Why? The existing semantics will continue
to function as expected when -std=gnu89 is specified, but the eventual default for inline will be
GCC’s behavior when -std=gnu99 is specified. The issue is that -std=gnu99 will implement the C99
semantics but that it does not yet do so.

27

28

CHAPTER 1 USING GCC’S C COMPILER

Tip GCC does not inline any functions when not optimizing unless you specify the always_inline attribute for
the function, such as

inline void f (const char) _ attribute_ ((always_inline));

Function Names As Strings

GCC predefines two magic identifiers that store the name of the current function. _ FUNCTION__
stores the function name as it appears in the source code; _ PRETTY_FUNCTION _stores the name
pretty printed in a language-specific fashion. In C programs, the two function names are the same,
but in C++ programs, they will probably be different. Consider the following source code from the
file FUNCTION_example.c:

#include <stdio.h>

void here(void)

{
printf("Function %s in %s\n", _ FUNCTION__, _ FILE_);

printf("Pretty Function %s in %s\n", _ PRETTY_FUNCTION__, _ FILE_);
}

int main(void)

here();
return 0;
}
Running the resulting program, you get the following:
$./a.out

Function here in FUNCTION example.c
Pretty Function here in FUNCTION example.c

Because FUNCTION__and _PRETTY_FUNCTION _are notmacros, #ifdef _ FUNCTION _is mean-
ingless inside a function because the preprocessor does not do anything special with the identifier
__FUNCTION__ (or _ PRETTY_FUNCTION).

A third related, predefined identifier is __LINE__, which holds the current line number in the
source code. As an example, consider the following slightly modified source code from the source
file FUNCTION example with line.c:

#include <stdio.h>

void here(void)
{
printf("Function %s in %s, line %d\n", _ FUNCTION__, _ FILE , _ LINE_);
printf("Pretty Function %s in %s, line %d\n", _ PRETTY_FUNCTION_ , \
__FILE , LINE);

CHAPTER 1 USING GCC'S C COMPILER

int main(void)

{
here();
return O;
}
Running the resulting program, you get the following:
$./a.out

Function here in FUNCTION example with line.c, line 5
Pretty Function here in FUNCTION example with line.c, line 6

#pragmas Accepted by GCC

GCC supports several types of #pragmas, primarily in order to compile code originally written for
other compilers. Pragmas essentially enable you to embed special instructions when code is compiled
on specific platforms or under specific circumstances—you can think of them as a special case of
platform-specific #ifdef. Note that in general I do not recommend the use of pragmas. In particular,
GCC defines pragmas for ARM, Darwin, Solaris, and Tru64 systems.

ARM #pragmas
ARM targets define #pragmas for controlling the default addition of long_call and short_call
attributes to functions.

* long_calls: Enables the long_call attribute for all subsequent functions.

* no_long calls: Enables the short_call attribute for all subsequent functions.

* long_calls off: Disables the long_call and short_call attributes for all subsequent
functions.

Darwin #pragmas

The following #pragmas are available for all architectures running the Darwin operating system.
These are useful for compatibility with other Mac OS compilers.

e mark token:Is accepted for compatibility, but otherwise ignored.

* options align=target: Sets the alignment of structure members. The values of target may be
mac68k, to emulate m68k alignment, or power, to emulate PowerPC alignment. reset restores
the previous setting.

* segment token:Isaccepted for compatibility, but otherwise ignored.

e unused (var [, var]...):Declares variables as potentially unused, similar to the effect of the
attribute unused. Unlike the unused attribute, #pragma can appear anywhere in variable
scopes.

Solaris #pragmas

For compatibility with the SunPRO compiler, GCC’s C compiler supports the redefine_extname
oldname newname pragma. This #pragma assigns the assembler label newname to the C function
oldname, which is equivalent to the asmlabel’s extension. The #pragma must appear before the func-
tion declaration. The preprocessor defines _ PRAGMA__REDEFINE_EXTNAME if this #pragma is available.

29

30

CHAPTER 1 USING GCC’S C COMPILER

Tru64 #pragmas

GCC’s C compiler supports the extern prefix string #pragma for compatibility with the Compaq
C compiler. #pragma extern_prefix string prefixes the value of string to all subsequent function
and variable declarations. To terminate the effect, use another #pragma extern_prefix with an
empty string. The preprocessor defines PRAGMA EXTERN_PREFIX if this #pragma is available.

Objective-C Support in GCC’s C Compiler

Objective-C is an object-oriented superset of C with extensions that provide a message-passing
interface similar to that provided by the Smalltalk-80 language. Objective-C was originally written by
Brad J. Cox and KurtJ. Schmucker at Stepstone Corporation (originally known as Productivity Prod-
ucts International). Objective-C’s primary goal is to add some of the promises of truly reusable code
to the Clanguage by adding some of the core concepts of Smalltalk-80 while leaving behind baggage
such as the fact that most Smalltalk environments ran on virtual machines rather than as stand-
alone compiled code. Unfortunately, the virtual machine concept lives on, to some extent, in Objective-
C’s heavy reliance on a runtime environment, which means that it is not possible to compile stand-
alone (i.e., static) Objective-C code.

Though excellent in both concept and implementation, Objective-C was saved from potential
obscurity by its adoption in 1988 as the default language used for developing NeXTSTEP applica-
tions. NeXTSTEP was the operating system and execution environment used on Steve Jobs’ NeXT
computers, and is now the parent of the Cocoa execution and development environment used on
Mac OS X. Objective-C support was added to GCC’s C compiler, gcc, beginning in 1992, and is
heavily used in the GNUstep project.

The fact that Objective-C is a pure superset of C differentiates it from C++, while its dynamic
typing and other runtime features distinguish it from the other object-oriented languages supported
by GCC, namely C++ and Java. The Objective-C runtime library supports accessing methods and
classes by their string names, does a significant amount of typing at runtime (i.e., when you actually
execute your application), and supports the addition of classes and categories at runtime. There are
actually two standard Objective-C runtime libraries/environments available. If you are running
applications on Mac OS X platforms, you will link against the NeXT runtime library that is present on
that platform—on all other platforms, you will compile and link with gcc’s default Objective-C library.
Regardless of whether you build gcc yourself for the Mac OS X platform or install a precompiled
version as part of Apple’s Xcode tools development environment, its default behavior on OS X
systems is to expect and link with the NeXTSTEP/OS X Objective-C runtime.

IDENTIFYING LIBRARY DEPENDENCIES

Given the differences in capabilities between the GNU and the NeXTSTEP runtimes, it is often useful to identify the
libraries that your application has linked against. This is especially important if you have built your own version of the
Objective-C compiler for your Mac OS X system. By default, Apple’s gcc compiler (provided with its Xcode develop-
ment environment) includes and uses the NeXTSTEP Objective-C runtime. If you’ve built your own gcc, you may be
using its runtime and therefore cannot use all of the capabilities provided by the NeXTSTEP runtime.

The traditional mechanism for listing library dependencies used by the loader to resolve symbols is to use the
Idd program, which is traditionally built and installed as part of the GNU C library, Glibc. On Linux systems and most
other systems with Glibc installed, its output looks something like the following for a traditional Objective-C application:

CHAPTER 1 USING GCC'S C COMPILER

$ 1dd hello

libobjc.s0.2 => /usr/local/gcc4.1svn/1ib64/1ibobjc.so.2 (0x00002aaaaabc2000)
libgcc s.so.1 => /usr/local/gcc4.1svn/1ib64/1ibgcc s.so.1 (0x00002aaaaacde000)
libc.so.6 => /1ib64/tls/libc.so.6 (0x00002aaaaadec000)
/1ib64/1d-1inux-x86-64.50.2 (0x00002aaaaaaab0o00)

Okay, maybe that’s not so standard—you can see that I'm using a 64-bit system and running my own version
of gcc, built from the latest Subversion sources. Well, you wanted this book to be up-to-date, right? Regardless, it at
least tells me what libraries my application depends on.

Unfortunately, the Idd application is not provided by default as part of the Xcode gcc environment on Mac 0S X
systems. To list library dependencies on 0S X systems, you’ll need to use the otool -L command, as in the following
example:

$ otool -L hello

hello:

/usr/lib/1libobjc.A.dylib (compatibility version 1.0.0, current version 227.0.0)
/usr/lib/libgcc_s.1.dylib (compatibility version 1.0.0, current version 1.0.0)
/usr/1ib/1libmx.A.dylib (compatibility version 1.0.0, current version 92.0.0)
/usr/1ib/1ibSystem.B.dylib (compatibility version 1.0.0, current version 88.1.2)

This example shows that this application uses the standard libraries provided with the default gcc delivered
with Xcode. However, after compiling my application with a hand-built version of gcc for 0S X, | get the following output:

$ otool -L hello
hello:
/usr/lib/libobjc.A.dylib (compatibility version 1.0.0, current version 227.0.0)
/usr/local/lib/libgcc s.1.0.dylib (compatibility version 1.0.0, =

current version 1.0.0)
/usr/1ib/libmx.A.dylib (compatibility version 1.0.0, current version 92.0.0)
/usr/1ib/1ibSystem.B.dylib (compatibility version 1.0.0, current version 88.1.2)

In this case, my application is still using the default NeXTSTEP runtime, but is using its own version of libgcc,
which should work correctly in the OS X environment. However, if you encounter problems or “new behavior” after
recompiling an existing application with a hand-built version of gcc on Mac 0S X systems, it's worth quickly checking
library dependencies before plunging into an orgy of printf()’s and other more classic diagnostic techniques.

Like the other chapters in this book that explain how to use the GCC compilers for different
languages, this section is not a tutorial on the Objective-C programming language. Some excellent
sites that provide that sort of information include the following:

* Objective-C Links, Resources, Stuff: http://www.foldr.org/~michaelw/objective-c/
* About Objective-C: http://www.objc.info/about/
* Object-Oriented Programming and the Objective-C Language: http://toodarkpark.org/

computers/objc/

The rest of this section discusses the basics of compiling Objective-C code with GCC'’s C compiler,
the GCC options that are specific to compiling Objective-C programs, and the highlights of GCC'’s
Objective-C runtime library.

31

32

CHAPTER 1 USING GCC’S C COMPILER

Compiling Objective-C Applications

Objective-C source code files traditionally have the .m extension. As an example, Listing 1-4 shows
the file hello.m, the traditional hello, world program written in Objective-C.

Listing 1-4. Hello, World Written in Objective-C

#include <objc/Object.h>
#include <stdlib.h>
#include <stdio.h>

@interface Hello:Object
{

// Empty because no instance variables are used

}
- (void)msg;
@end

@implementation Hello
- (void)msg
{

}
@end

printf("Hello, world!\n");

int main(void)
{

id myHello; // id is a generic representation of any Objective-C object
myHello=[Hello new]; // or myHello = [[Hello alloc] init]; for purists

[myHello msg];

[myHello free];
return EXIT_SUCCESS;

Note This hello, world example was largely cloned from the example in the Beginners Guide to Objective-C
Programming by Dennis Leeuw and Pascal Bourguignon, available at http://gnustep.made-it.com/BG-
objc. This is a friendly and useful introduction to Objective-C that is humorously sprinkled with lines from “Look
What They’ve Done to My Song, Ma,” by Melanie Safka. No need for YAHWPIO (yet another hello, world program in
Objective-C), though | changed things a bit to make it more readable for this context.

Asyou can see from this example, the extensions to C provided by Objective-C are defined using
keywords that begin with the @ symbol, and the objects and control constructs defined by those
extensions are invoked within square brackets in your code. The @keyword declarations are typically
put into Objective-C header files, but this is just an example, so I've put everything into one file.

Once again, this is not a tutorial on Objective-C programming, but consistent examples are
always a good thing. Table 1-2 summarizes the @keyword statements that are supported in GCC'’s
Objective-C implementation.

CHAPTER 1 USING GCC'S C COMPILER

Table 1-2. @keyword Statements for GCC’s Objective-C Support

Keyword Definition

@compatibility alias Enables you to define a class name as equivalent to another
class name. For example, @compatibility alias foo bar; tells
the compiler that each time it encounters foo as a class name,
it should replace it with bar. The alias must not be the name of
an existing class, and the class that you are aliasing must actually
exist. This keyword is unique to GCC’s Objective-C support.

@implementation Defines the unique methods for a defined class—those that are
not simply inherited from its parent. The definition for a class
implementation is terminated by an @end statement.

@interface Defines a class, its parent (if one exists), and any methods
unique to that class. The definition for each class is terminated
by an @end statement.

@private Used within an @interface definition to identify variables that
are local to a specific class.

@protected Used within an @interface definition to explicitly identify
variables that are inherited by all subclasses (which is the
default behavior of Objective-C class variables).

@protocol Defines a set of methods that classes can conform to.
An @protocol definition is terminated by an @end statement.
@public Used within an @interface definition to identify variables that
are visible everywhere.
@selector Identifies a message in Objective-C.
@synchronized Identifies protected areas of code that must be locked

during execution.

@try/@catch/@finally@throw Associated with the structured error handling capabilities
provided by the NeXT runtime on Mac OS X 10.3 and later
systems. See the section later in this chapter titled “Structured
Error Handling” for more information.

GCC Options for Compiling Objective-C Applications

This section describes the command-line options that are only meaningful for Objective-C and
Objective-C++ programs. Because Objective-C is a superset of C, you can also use C language options
when compiling Objective-C programs, as well as the language-independent GCC options that are
discussed in Appendix A. Similarly, you can use C++ language options when compiling Objective-C++
applications.

A sample example of compiling an Objective-C program using gcc is the following:

gcc -lobjc -o hello hello.m

This example compiles the program shown in Listing 1-4, producing an executable named
hello. If you neglect to include the Objective-C runtime library, you will see error output about
undefined references, as in the following:

33

34

CHAPTER 1 USING GCC’S C COMPILER

Listing 1-4. Sample Error Messages from a Missing Objective-C Library
$ gcc hello.m -o hello

/tmp/ccxAki59.0: In function “main':

hello3.m: (.text+0x2b): undefined reference to “objc_get class'

hello3.m: (.text+0x3b): undefined reference to “objc_msg lookup'

hello3.m: (.text+0x5d): undefined reference to “objc_msg lookup'

hello3.m: (.text+0x81): undefined reference to “objc_msg lookup'

/tmp/ccxAkis59.o: In function *__objc_gnu_init':

hello3.m: (.text+0xab): undefined reference to ~_ objc_exec_class'
/tmp/ccxAki59.o: (.data+0x208): undefined reference to ~_ objc_class_name Object’
collect2: 1d returned 1 exit status

You must always specify the -1lobjc option when linking an Objective-C program using gcc so
that gcc links in the Objective-C runtime library. The gcc compiler also provides a number of options
that are unique to compiling Objective-C and Objective-C++ programs. These options are shown in
Table 1-3.

Table 1-3. GCC Options for Compiling Objective-C and Objective-C++ Code

Option Definition
-fconstant-string-class= Specifies the name of the class (class-name) to use as the name
class-name of the constant string class. See the “Constant String Objects”

section later in this chapter for more information about defining
constant strings and specifying a different name for the constant
string class. If the -fconstant-cfstrings option is also specified,
it will override any -fconstant-string-class setting and cause
@"string" literals to be laid out as constant CoreFoundation strings.

-fgnu-runtime Causes gcc to generate object code compatible with the standard
GNU Objective-C runtime. This is the default on most systems
except for gcc running on the Darwin and Mac OS X platforms.

-fnext-runtime Generates output compatible with the NeXT runtime. This is
the default for Darwin and Mac OS X systems. The macro
__ NEXT_RUNTIME _is predefined if this option is used so that
applications can identify and target the NeXT runtime.

-fno-nil-receivers Causes gcc to assume that the receiver is valid in all Objective-C
message instructions ([receiver message:arg]), enabling the
use of more efficient entry points in the runtime. This option is
only available if you are using the NeXT runtime on Mac OS X
10.3 and later systems.

-fobjc-exceptions Enables syntactic support for structured exception handling in
Objective-C, much like that provided by C++ and Java. This
option is only available if you are using the NeXT runtime on
Mac OS X 10.3 and later systems. See the section titled “Structured
Error Handling” later in this chapter for more information.

CHAPTER 1 USING GCC'S C COMPILER

Table 1-3. GCC Options for Compiling Objective-C and Objective-C++ Code

Option

Definition

-freplace-objc-classes

-fzero-link

-gen-decls

-Wno-protocol

-Wselector

-Wundeclared-selector

-print-objc-runtime-info

Causes gcc to embed a special marker that instructs the loader
not to statically link the current object file into the main
executable, which enables the object file to be dynamically
loaded at runtime using the Mac OS X dynamic loader, dyld.
This option is used with the NeXT runtime’s Fix-and-Continue
debugging mode, where an object file can be recompiled and
dynamically reloaded while a program is running, without needing
to restart an application. This functionality is only available on
Mac OS X 10.3 and later systems.

Suppresses the default behavior of the GNU Objective-C
runtime to use calls to objc_getClass() to identify class entry
points at runtime. When theNeXT runtime is being used, and
class names are known at compile time, gcc replaces calls to
objc_getClass() with static references that are initialized at
load time in order to improve runtime performance. This can
be useful in Zero-Link debugging mode, since it enables indi-
vidual class implementations to be modified during program
execution.

Creates a file named sourcename.decl that contains interface
declarations for all classes encountered in the sourcename.m
file and any included files.

Issues a warning for every method in a protocol that is not
implemented by the class that was declared to implement that
protocol and any of its superclasses. The default behavior is to
issue a warning for every method not explicitly implemented in
that specific class.

Causes gcc to display warnings if multiple methods of different
types for the same selector are found during compilation. The
check is performed on the list of methods in the final stage of
compilation, including methods for selectors declared with an
@selector() expression. These messages are not displayed if
compilation terminates due to errors, or if the generic GCC
-fsyntax-only option was specified and the program is there-
fore not actually being compiled.

Causes gcc to display warnings if an @selector() expression
referring to an undeclared selector is encountered. A selector is
considered undeclared if no method with that name has been
declared before the @selector() expression, either explicitly

in an @interface or @protocol declaration, or implicitly in an
@implementation section. This option always performs its checks
as soon as an @selector() statement is encountered, which
enforces the Objective-C coding convention that methods and
selectors must be declared before being used.

Causes gcc to generate a C header to stdout that describes the
largest structure that is passed by value in an application, if any.

35

36

CHAPTER 1 USING GCC’S C COMPILER

Exploring the GCC Objective-C Runtime

In addition to such standard Objective-C features as dynamic runtime typing, the Objective-C
runtime provides support for specific Objective-C constructs that are present in your code or acti-
vate during its compilation. This section highlights those features and explains how and why they
are used.

Constant String Objects

When compiling Objective-C programs, gcc can generate constant string objects that are instances of the
Objective-C runtime’s NXConstantString class, which is defined in the header file objc/NXConstStr.h.
You must therefore include this header file when using Objective-C’s constant string objects feature.
Constant string objects are declared by defining an identifier consisting of a standard C constant
string that is prefixed with the character @, as in the following example:

id myString = @"this is a constant string object";

The gcc compiler also enables you to define your own constant string class by using the -fconstant
-string-class=class-name command-line option. The class that you specify as anew constant string
class must conform to the same structure as NXConstantString, namely

@interface MyConstantStringClass

{
Class isa;
char *c_string;
unsigned int len;
}
@end

Note The default class name is NXConstantString if you are using GCC’s default GNU Objective-C runtime
library, and is NSConstantString if you are using the NeXT runtime. The discussion in this section focuses on the
standard GNU Objective-C runtime.

When creating a statically allocated constant string object, the compiler copies the specified
string into the structure’s c_string field, calculates the length of the string, inserts that value into the
length field, and temporarily assigns the value NULL to the class pointer. The correct value of that
pointer is determined and filled in at execution time by the Objective-C runtime, either with the
runtime default or any value that you specified as the value of the -fconstant-string-class option.

Note Because you can incrementally compile Objective-C files and subsequently link the resulting object code,
it is possible to specify different constant string classes in different object files using different values of the -fconstant
-string-class option. While not illegal, this is also not suggested, since at a minimum, this is confusing to
everyone but the author of the code and it complicates debugging.

By default, the Objective-C runtime’s NXConstantString class inherits from the Object class.
When defining your own constant string class, you can choose to inherit your customized constant
string class from a class other than Object. Your constant string class doesn’t have to provide any

CHAPTER 1 USING GCC'S C COMPILER

specific methods, but the layout of the data elements in your string class must be compatible with
the layout of the standard class definition.

Executing Code Before Main

The GNU Objective-C runtime enables you to execute code before your program enters the main
function using the +load class load mechanism, which is executed on a per-class and per-category
basis. This can be useful to initialize global variables, correctly bind I/0 streams, or perform other
setup/initialization actions before actually sending a message to a class. The standard +initialize
mechanism is only invoked when the first message is sent to a class, which could depend on the
existing state you would like to set up with the +1oad mechanism.

Though executed on a per-class and per-category basis, the +1oad directive is not overridden by
category invocations of that directive—instead, these augment the class’s +1load directives. If a class
and a category of that class both invoke the +1load directive, both methods are invoked. This enables
you to do generic initialization on a class and then refine that initialization for specific categories of
that class.

Garbage Collection

As discussed in Chapter 11, GCC 4.x enables you to optionally configure and build GCC'’s Objective-C
compiler to use a new memory management policy and associated garbage collector, known to its
friends as the Boehm-Demers-Weiser conservative garbage collector. When this garbage collector is
used, objects are allocated using a special typed memory allocation mechanism that requires precise
information on where pointers are located inside objects. This information is calculated once per
class, immediately after the class has been initialized.

In GCC 4.x, the class_ivar_set_gcinvisible() runtime function enables you to declare weak
pointer references that are essentially hidden from this garbage collector. This function enables you
to programmatically track allocated objects, yet still allow them to be collected. Weak pointer refer-
ences cannot be global pointers, but can only be members of objects. Every type that is a pointer
type can be declared a weak pointer, including id, Class, and SEL.

Weak pointers are supported through a new type character specifier represented by the ! char-
acter. The class_ivar set gcinvisible() function adds or removes this specifier to the string type
description of the instance variable named as its argument, as in the following example for the inter-
face foo:

class_ivar_set gcinvisible (self, "foo", YES);

Structured Error Handling

The NeXT Objective-C runtime introduced on Mac OS X 10.3 provides structured error-handling
capabilities that should be familiar to most programmers working in object-oriented languages. The
rough structure of this error-handling mechanism is the following:

@try {

@throw expr;

@catch (AnObjCClass *exc) {

@throw expr;

37

38

CHAPTER 1 USING GCC’S C COMPILER

@throw;

}
@catch (AnotherClass *exc) {

}
@catch (id allOthers) {

}
@finally {

@throw expr;

Only pointers to Objective-C objects can be thrown and caught using this scheme. An @throw
statement may appear anywhere in an Objective-C or Objective-C++ program. When used inside of
an @catch block, the @throw statement need not have an argument, in which case the object caught
by the enclosing @catch block is rethrown. When an object is thrown, it is caught by the nearest
@catch clause capable of handling objects of that type, just as in C++ and Java. You can also specify
an@catch(id ...) clause to catch any exceptions that are not caught by specific @catch clauses. If
provided, an @finally block is executed as soon as the application exists from a preceding @try ...
@catch section. The @finally block is executed regardless of whether any exceptions are thrown,
caught, or rethrown inside the @try ... @catch section, in the same way that the finally clause
works in Java.

Note The Objective-C exception model does not interoperate with C++ exceptions in GCC 4.1 and earlier.
You cannot @throw an exception from Objective-C and catch it in C++, or catch an exception thrown in C++ in
Objective-C.

Synchronization and Thread-Safe Execution

The -fobjc-exceptions switch also enables the use of synchronization blocks for thread-safe execu-
tion, as in the following example:

@synchronized (ObjCClass *guard) {

}

When entering an @synchronized block, a thread of execution first checks whether another
thread has already placed a lock on the corresponding guard object. If so, the current thread waits
until the lock is released before proceeding. Once the guard object is unlocked, the current thread
places its own lock on it, executes the code contained in the @synchronized block, and then releases
the lock. Throwing exceptions out of @synchronized blocks will cause the guarding object to be
unlocked properly.

Note Unlike Java, entire methods cannot be marked as @synchronized in GCC’s Objective-C.

CHAPTER 1 USING GCC'S C COMPILER

Type Encoding

The GCC Objective-C compiler generates type encodings for all the types encountered in an appli-
cation. These encodings are used at runtime to find out information about selectors and methods as
well as about objects and classes. Table 1-4 shows the type encodings used by GCC’s Objective-C
and Objective-C++ compilers for basic datatypes, type identifiers, and nonatomic datatypes. Type
identifiers are encoded immediately before the types themselves, but are only encoded when they
appear in method arguments.

Table 1-4. Type Encodings Used by GCC for Types and Type Identifiers

Type Encoding

array [followed by the number of elements in the array, followed by the type of
those elements; terminated by]

bit-fields b: followed by the starting position of the bit-field, the type of the bit-field,
and the size of the bit-field. This differs from the encoding used by tradi-
tional Objective-C runtimes, such as the NeXT runtime, in order to allow
bit-fields to be properly handled by runtime functions that compute sizes
and alignments of types that contain bit-fields.

bycopy 0

char d

char * *

class #

const T

double d

float f

id @

in n

inout N

int I

long 1

long long

oneway v

out 0

pointer ~: followed by the pointed type

SEL

short s

structure { followed by the name of the structure, the = sign, the type of the members,
and terminated by }

union (followed by the name of the structure, the = sign, the type of the members,

and terminated by)

39

40 CHAPTER 1 USING GCC’S C COMPILER

Table 1-4. Type Encodings Used by GCC for Types and Type Identifiers (Continued)

Type Encoding
unknown type ?
unsigned char C
unsigned int I
unsigned long L
unsigned long long 0
unsigned short S
void v

Note Unnamed data structures are encoded using a question mark as the structure name.

CHAPTER 2

Using GCC’s C++ Compiler

This chapter discusses typical usage of the GNU Compiler Collection’s C++ compiler, g++, focusing
on the command-line options and constructs that are specific to g++. GCC’s C++ compiler is tradi-
tionally installed so you can execute it by either the g++ or c++ commands, just as many installations
install cc as a synonym for gcc. This chapter uses g++ in examples and running text because this is

the more traditional name of the executable for the GCC C++ compiler.

GCC Option Refresher

Appendix A discusses the options that are common to all of the GCC compilers and the ways to
customize various portions of the compilation process. But so you don’t have to jump back and forth
in the book, this section provides a quick refresher of basic compiler usage as it applies to the GCC
C compiler. For detailed information, see Appendix A. If you are new to g++ and just want to get
started quickly, you're in the right place.

The g++ compiler accepts both single-letter options, such as -0, and multiletter options, such as
-ansi. Because it accepts both types of options you cannot group multiple single-letter options
together, as you may be used to doing in many GNU and Unix/Linux programs. For example, the
multiletter option -pg is not the same as the two single-letter options -p -g. The -pg option creates
extra code in the final binary that outputs profile information for the GNU code profiler, gprof. On
the other hand, the -p -g options generate extra code in the resulting binary that produces profiling
information for use by the prof code profiler (-p) and causes gcc to generate debugging information
using the operating system’s normal format (-g).

Despite its sensitivity to the grouping of multiple single-letter options, you are generally free to
mix the order of options and compiler arguments on the gcc command line. That is, invoking g++ as

g++ -pg -fno-strength-reduce -g myprog.c -o myprog
has the same result as
g++ myprog.c -o myprog -g -fno-strength-reduce -pg

I'wrote that you are generally free to mix the order of options and compiler arguments because,
in most cases, the order of options and their arguments does not matter. In some situations, order
does matter, if you use several options of the same kind. For example, the -I option specifies the
directory or directories to search for include files. So, if you specify - I several times, gcc searches the
listed directories in the order specified.

Compiling a single source file, myprog.cc, using g++ is easy—just invoke g++, passing the name
of the source file as the argument.

L)

42

CHAPTER 2 USING GCC’S C++ COMPILER

$ g++ myprog.cc

$1s -1
-TWXT-XT-X 1 wvh users 13644 Oct 5 16:17 a.out
-IW-Y--T-- 1 wvh users 220 Oct 5 16:17 myprog.cc

By default, the result on Linux and Unix systems is an executable file named a.out in the current
directory, which you execute by typing ./a.out. On Cygwin systems, you will wind up with a file
named a.exe that you can execute by typing either ./a or ./a.exe.

To define the name of the output file that g++ produces, use the -o option, as illustrated in the
following example:

$ g++ myprog.cc -o runme

$1s -1
-IW-T--T-- 1 wvh users 220 Oct 5 16:17 myprog.cc
-IWXT-XT-X 1 wvh users 13644 Oct 5 16:28 runme

If you are compiling multiple source files using g++, you can simply specify them all on the gcc
command line, as in the following example, which leaves the compiled and linked executable in the
file named showdate:

$ g++ showdate.cc helper.cc -o showdate

If you want to compile these files incrementally and eventually link them into a binary, you can
use the -c option to halt compilation after producing an object file, as in the following example:

$ g++ -c showdate.cc
$ g++ -c helper.cc
$ g++ showdate.o helper.o -o showdate

$ 1s -1

total 124

-IW-Y--I-- 1 wvh users 210 Oct 5 12:42 helper.cc
-IW-T--T-- 1 wvh users 45 Oct 5 12:29 helper.h
-IW-Y--T-- 1 wvh users 1104 Oct 5 13:50 helper.o
-TWXT-XT-X 1 wvh users 13891 Oct 5 13:51 showdate
-IW-T--T-- 1 wvh users 208 Oct 5 12:44 showdate.cc
STW-T--T-- 1 wvh users 1008 Oct 5 13:50 showdate.o

Note All of the GCC compilers “do the right thing” based on the extensions of the files provided on any GCC
command line. Mapping file extensions to actions (for example, understanding that files with . o extensions only
need to be linked) is done via the GCC specs file. Prior to GCC version 4, the specs file was a stand-alone text file
that could be modified using a text editor; with GCC 4 and later, the specs file is built-in and must be extracted
before it can be modified. For more information about working with the specs file, see “Customizing GCC Using Spec
Strings” in Appendix A.

CHAPTER 2 USING GCC’S C++ COMPILER

It should be easy to see that a project consisting of more than a few source code files would
quickly become exceedingly tedious to compile from the command line, especially after you start
adding search directories, optimizations, and other g++ options. The solution to this command-line
tedium is the make utility, which is not discussed in this book due to space constraints (although it
is touched upon in Chapter 8).

Filename Extensions for C++ Source Files

As mentioned in the previous section, all GCC compilers evaluate filename suffixes to identify the
type of compilation that they will perform. Table 2-1 lists the filename suffixes that are relevant to
g++ and the type of compilation that g++ performs for each.

Table 2-1. GCC Filename Suffixes for C++

Suffix Operation

.C C++ source code to preprocess.

.cc C++ source code to preprocess. This is the standard extension for C++ source files.
.cpp C++ source code to preprocess.

. CXX C++ source code to preprocess

Jii C++ source code not to preprocess.

A filename with no recognized suffix is considered an object file to be linked. GCC'’s failure
to recognize a particular filename suffix does not mean you are limited to using the suffixes listed
previously to identify source or object files. As discussed in Appendix A, you can use the -x lang
option to identify the language used in one or more input files if you want to use a nonstandard
extension. The lang argument tells g++ the input language to use; and for C++, input files can be
either c++ (a standard C++ source file) or c++-cpp-output (a C++ source file that has already been
preprocessed and therefore need not be preprocessed again).

Note When any GCC compiler encounters a file with one of the suffixes shown in Table 2-1, it treats the file as
a C++ file. Nonetheless, other GCC compilers (such as gec) do not understand the complete chain of dependencies,
such as class libraries, that C++ programs often require, and do not directly know how to compile C++ code. You
should therefore always use g++ (or c++ if you are in environments that require this name) to invoke GCC’s C++
compiler directly.

Command-Line Options for GCC’s C++ Compiler

As explained in Appendix A, many command-line options are common to all of the compilers in the
GCC suite. Table 2-2 shows the command-line options that are specific to the g++ compiler.

43

44

CHAPTER 2

USING GCC’S C++ COMPILER

Table 2-2. Standard C++ Command-Line Options

Option

Description

-fabi-version=n

-fcheck-new

-fconserve-space

-fdollars-in-identifiers

-fms-extensions

-fno-access-control

-fno-const-strings

-fno-elide-constructors

-fno-enforce-eh-specs

-ffor-scope

-fms-extensions

-fno-gnu-keywords

-fno-implement-inlines

-fno-implicit-inline-
templates
-fno-implicit-templates

-fno-nonansi-builtins

-fno-operator-names

Specifies the version of the C++ application binary interface that
the compiled code should conform to. For GCC versions 3.4 and
greater, the default version is version 2. See the section of this
chapter titled “ABI Differences in g++ Versions” for additional
information.

Ensures that the pointer returned by the new operator is not NULL
before accessing the allocated storage.

Puts global variables initialized at runtime and uninitialized
global variables in the common segment, conserving space in
the executable.

Permits the $ symbol in identifiers (the default).

Allows g++ to omit warnings about nonstandard idioms in the
Microsoft Foundation Classes (MFC).

Disables access checking.

Forces g++ to assign string constants to the char * type, even
though the ISO C++ mandates const char *.

Instructs g++ to always call the copy constructor rather than using
a temporary to initialize another object of the same type.

Disables runtime checks for violations of exception handling.

Limits the scope of variables declared in a for initialization statement
to the end of the for loop. You can specify the -fno-for-scope option
to force the scope of variables declared in a for initialization state-
ment to be the enclosing scope, which is contrary to the ISO standard
but was the behavior in older versions of g++ and in many traditional
C++ compilers.

Disables pedantic warnings about constructs from the Microsoft
Foundation Classes.

Disables the use of typeof as a keyword so it can be used as an
identifier. You can still use the _ typeof keyword. This option is
implied when using the -ansi option.

Saves space by not creating out-of-line copies of inline functions
controlled by #pragma statements. Using this option will generate
linker errors if the such functions are not inlined everywhere they
are called.

Saves space by not creating implicit instantiations of inline templates
(see -fno-implicit-templates).

Saves space by only creating code for explicit instantiations of out-
of-line (noninline) templates.

Disables use of built-ins not required by the ANSI/ISO standard,
including ffs, alloca, exit, index, bzero, conjf, and related
functions.

Disables the use of the and, bitand, bitor, compl, not, or, and xor
keywords as synonyms for those operators.

CHAPTER 2 USING GCC’S C++ COMPILER

Table 2-2. Standard C++ Command-Line Options

Option

Description

-fno-optional-diags

-fno-rtti

-fno-threadsafe-statics

-fno-weak

-fpermissive

-frepo

-fstats

-ftemplate-depth-n

-fuse-cxa-atexit

-fvisibility=value

-nostdinc++

Disables nonstandard internal diagnostics, such as when a specific
name is used in different ways within a class.

Disables generation of runtime type identification information for
classes with virtual functions.

Causes g++ not to generate the additional code required for the
thread-safe initialization of local statics as specified in the C++ ABI.
Using this option can reduce code size in applications that do not
need to be thread-safe.

Causes g++ not to use weak symbol support, even if it is provided
by the linker. This option is intended for use when testing g++, and
should not be used in any other situation.

Converts errors about nonconformant code to warnings, allowing
compilation to continue.

Allows template instantiation to occur automatically at link time.
Using this option implies the -fno-implicit-templates option.

Displays statistics about front end processing when compilation
completes. This option is generally only used by the g++ develop-
ment team.

Prevents template instantiation recursion going deeper than the
integral value of n.

Registers destructors for static objects with static storage duration
with the _cxa_atexit function rather than atexit.

(GCC 4.02 and later) Causes g++ to not export ELF symbols
(Executable and Linking Format, the default binary format used on
systems such as Linux and Solaris) from the current object module
or library when specifying hidden as the value of this option. This
substantially reduces the size of resulting binaries and results in
performance improvements due to symbol table lookup improve-
ments. However, using this option can also cause problems throwing
exceptions across modules with different visibility levels. See the
section “Visibility Attributes and Pragmas for GCC C++ Libraries”
later in this chapter for more information. If this option is not
used, the default visibility value is default, which exports all ELF
symbols across object files and from libraries.

Disables searching for header files in standard directories specific
to C++.

The g++ compiler recognizes other options specific to C++, but these options deal with optimi-
zations, warnings, and code generation, so we will discuss them in detail in other chapters. In particular,
the section of Appendix A titled “Enabling and Disabling Warning Messages” provides general infor-
mation about using warning options and includes C++-specific warning options. Chapter 5 covers
C++-specific optimization options. Table 2-3 summarizes warning options that are specific to C++.

45

CHAPTER 2 USING GCC’S C++ COMPILER

Table 2-3. Warning-Related Options for C++

Option Description

-Wabi Generates a warning when the compiler generates code that is not
compatible with the standard C++ ABI. For GCC versions 3.4 and
greater, the default version is version 2. See the section of this
chapter titled “ABI Differences in g++ Versions” for additional
information.

-Wctor-dtor-privacy Generates a warning when all constructors and destructors in a
class are private and therefore inaccessible.

-Weffc++ Generates a warning for any violation of the stylistic C++ guide-
lines given in Effective C++, Scott Meyers (Addison-Wesley, 2005.
ISBN: 0-321-33487-6).

-Wno-deprecated Does not generate warnings for deprecated C++ features or usage.

-Wno-non-template-friend Does not generate warnings when nontemplated friend functions
are declared within a template. In the C++ language template
specification, a friend must declare or define a nontemplate
function if the name of the friend is an unqualified identifier.

-Wno-pmf-conversions Does not generate a warning when a pointer to a member function is
internally converted to a standard pointer.

-Wnon-virtual-dtor Generates a warning when a class requires a virtual destructor but
declares a nonvirtual destructor. Implied by GCC’s -Wall option
(discussed in Appendix A).

-Wold-style-cast Generates a warning if a traditional C-language-style cast to a
nonvoid type is used within a C++ source file.

-Woverloaded-virtual Generates a warning when a function declaration hides virtual
functions from a base class.

-Wreorder Generates a warning when the order in which members are
initialized in code does not match the order of their use. The g++
compiler automatically records the initialization sequence to
reflect the correct initialization order. Implied by -Wall.

-Wsign-promo Generates a warning when an overloaded operation chooses to
promote a value to a signed type over a conversion to an unsigned
type. Versions of g++ prior to version 3.4 would attempt to preserve
unsigned types, which is contrary to the C++ standard.

-Wstrict-null-sentinel Generates a warning if an uncast NULL is used as a sentinel. A
sentinel value is a value that is not a legitimate value for a particular
input and is used to indicate a “stopping” value. This is a potential
problem because an uncast NULL may have different sizes in different
compiler implementations.

ABI Differences in g++ Versions

The C++ application binary interface (ABI) is the binary flip side of the application programming

interface (API) defined by the C++ datatypes, classes, and methods in the include files and libraries
that are provided by a C++ library implementation. A consistent binary interface is required in order
for compiled C++ applications to conform to the binary conventions used in associated C++ libraries

CHAPTER 2 USING GCC’S C++ COMPILER 47

and related object files for things such as physical organization, parameter passing conventions, and
naming conventions. This consistency is especially critical for specific language support routines,
most notably those used for throwing or catching exceptions.

Most recent C++ compilers conform to a specific ABI, which effectively determines the execution
environments in which code compiled with that compiler can execute correctly (modulo coding
errors, of course—perhaps “execute as written” would be a more precise statement). Beginning with
version 3 of the GNU C++ compiler, g++ conforms to an industry-standard C++ ABI as defined in the
ABIspecification athttp://www.codesourcery.com/cxx-abi/abi.html. Though this specification was
originally written for 64-bit Itanium systems, it provides generic specifications that apply to any
platform and is the C++ ABI implemented on platforms such as GNU/Linux and BSD systems.

As with other types of libraries, an existing ABI can be extended through versioning. Versioning
enables subsequent library releases to add new symbols and functionality while retaining backward
compatibility with previous releases. Obviously, the reverse is not true—binaries linked with the
latest release of a library cannot execute against libraries that do not support all of the symbols and
functionality provided in the new library.

Versions of g++ prior to version 3.4 use ABI version 1. Versions 3.4 through 4.1 of g++ use ABI
version 2. You cannot use libraries compiled with one version of the C++ ABI with an appl